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Administrivia

• Homework 2 on the Web; due next Monday(?).
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Minute Essay From Last Lecture

• Most people remembered hearing about loop invariants in CSCI 3323, but few

remembered much. “Hm!”?

One person said something about how they don’t help in establishing that the

loop terminates. True! “Metrics” can help with that.

• Most people found the discussion of invariants in concurrent algorithms at

least somewhat interesting and/or useful. Good! We may not do much with

them from here on, but I think the ideas are useful to keep in mind as we

continue. (I think that about loop invariants too! more another time.)
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Semaphores – Review

• A “synchronization mechanism” — way of controlling interaction among

processes in a more abstract way than the first few solutions to the mutual

exclusion problem.

• Semaphore as ADT:

– “Value” — non-negative integer.

– Two operations, “up” and “down”, both atomic.

• Allows for nice solution for mutual exclusion, also ability to solve more

complex problems (e.g., bounded buffer).
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Implementing Semaphores

• We want to define:

– Data structure to represent a semaphore.

– Functions up and down.

• up and down should work the way we said, and we’d like to do as little

busy-waiting as possible.



CSCI 3323 September 18, 2017

Slide 5

Implementing Semaphores, Continued

• Idea — represent semaphore as integer plus queue of waiting processes

(represented as, e.g., process IDs).

• Then how should this work . . .
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Implementing Semaphores, Continued

• Variables — integer value, queue of process IDs queue.

down() {

bool zero;

enter_cr();

zero = (value == 0);

if (!zero)

value -= 1;

else

enqueue(current_process, queue);

leave_cr();

if (zero)

block(); // mark current process blocked

}

up() {

process p = null;

enter_cr();

if (empty(queue))

value += 1;

else

p = dequeue(queue);

leave_cr();

if (p != null)

unblock(p); // mark p runnable

}

• enter cr(), leave cr()? next slide.
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Implementing Semaphores, Continued

• Revised functions to enter, leave critical region:

enter_cr:

TSL registerX, lockVar

compare registerX with 0

if equal, jump to ok

invoke scheduler # thread yields to another thread

jump to enter_cr

ok:

return

leave_cr:

store 0 in lock

return
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Sidebar: Shared Memory and Synchronization

• Solutions that rely on variables shared among processes assume that

assigning a value to a variable actually changes its value in memory (RAM),

more or less right away. Fine as a first approximation, but reality may be more

complicated, because of various tricks used to deal with relative slowness of

accessing memory:

Optimizing compilers may keep variables’ values in registers, only

reading/writing memory when necessary to preserve semantics.

Hardware may include cache, logically between CPU and memory, such that

memory read/write goes to cache rather than RAM. Different CPUs’ caches

may not be in synch.
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Sidebar: Shared Memory and Synchronization,

Continued

• So, actual implementations need notion of “memory fence” — point at which

all apparent reads/writes have actually been done. Some languages provide

standard ways to do this; others (e.g., C!) don’t. C’s volatile (“may be

changed by something outside this code”) helps some but may not be

enough.

• Worth noting, however, that some library functions / constructs include these

memory fences as part of their APIs (e.g., Java synchronized blocks).
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Another Synchronization Mechanism — Monitors

• History — Hoare (1975) and Brinch Hansen (1975).

• Idea — combine synchronization and object-oriented paradigm.

• A monitor consists of

– Data for a shared object (and initial values).

– Procedures — only one at a time can run.

• “Condition variable” ADT allows us to wait for specified conditions (e.g., buffer

not empty):

– Value — queue of suspended processes.

– Operations:

∗ Wait — suspend execution (and release mutual exclusion).

∗ Signal — if there are processes suspended, allow one to continue. (if

not, signal is “lost”). Some choices about whether signalling process

continues, or signalled process awakens right away.
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Bounded Buffer Problem, Revisited

• Define a bounded buffer monitor with a queue and insert and

remove procedures.

• Shared variables:

bounded_buffer B(N);

Pseudocode for producers:

while (true) {

item = generate();

B.insert(item);

}

Pseudocode for consumers:

while (true) {

B.remove(item);

use(item);

}
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Bounded-Buffer Monitor

• Data:

buffer B(N); // N constant, buffer empty

int count = 0;

condition full;

condition empty;

• Procedures:

insert(item itm) {

if (count == N)

wait(full);

put(itm, B);

count += 1;

signal(empty);

}

remove(item &itm) {

if (count == 0)

wait(empty);

itm = get(B);

count -= 1;

signal(full);

}

• Does this work? (Yes.)
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Implementing Monitors

• Requires compiler support, so more difficult to implement than (e.g.)

semaphores.

• Java’s methods for thread synchronization are based on monitors . . .
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Java’s Adaptation of the Monitor Idea

• Data for monitor is instance variables (data for class).

• Procedures for monitor are synchronized methods/blocks — mutual

exclusion provided by implicit object lock.

• wait, notify, notifyAll methods.

• No condition variables, but above methods provide more or less equivalent

functionality.

Note that the language specs for Java allow spurious wake-ups. So “best

practice” is to wait() in a loop, re-checking the desired condition. The

textbook’s bounded-buffer code doesn’t do this (?!).
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Yet Another Synchronization Mechanism — Message

Passing

• Previous synchronization mechanisms all involve shared variables; okay in

some circumstances but not very feasible in others (e.g., multiple-processor

system without shared memory).

• Idea of message passing — each process has a unique ID; two basic

operations:

– Send — specify destination ID, data to send (message).

– Receive — specify source ID, buffer to hold received data. Usually some

way to let source ID be “any”.
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Message Passing, Continued

• Exact specifications can vary, but typical assumptions include:

– Sending a message never blocks a process (more difficult to implement

but easier to work with).

– Receiving a message blocks a process until there is a message to receive.

– All messages sent are eventually available to receive (can be non-trivial to

implement).

– Messages from process A to process B arrive in the order in which they

were sent.
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Implementing Message Passing

• On a machine with no physically shared memory (e.g., multicomputer), must

send messages across interconnection network.

• On a machine with physically shared memory, can either copy (from address

space to address space) or somehow be clever.

Slide 18

Mutual Exclusion, Revisited

• How to solve mutual exclusion problem with message passing?

• Several approaches based on idea of a single “token”; process must “have

the token” to enter its critical region.

(I.e., desired invariant is “only one token in the system, and if a process is in

its critical region it has the token.”)

• One such approach — a “master process” that all other processes

communicate with; simple but can be a bottleneck.

• Another such approach — ring of “server processes”, one for each “client

process”, token circulates.
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Mutual Exclusion With Message-Passing (1)

• Idea — have “master process” (centralized control).

Pseudocode for client process:
while (true) {

send(master, "request");

receive(master, &msg);

// assume "token"

do_cr();

send(master, "token");

do_non_cr();

}

Pseudocode for master process:
bool have_token = true;

queue waitQ;

while (true) {

receive(ANY, &msg);

if (msg == "request") {

if (have_token) {

send(msg.sender, "token");

have_token = false;

}

else

enqueue(sender, waitQ);

}

else { // assume "token"

if (empty(waitQ))

have_token = true;

else {

p = dequeue(waitQ);

send(p, "token");

}

}

}
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Mutual Exclusion With Message-Passing (2)

• Idea — ring of servers, one for each client.

Pseudocode for client process:
while (true) {

send(my_server, "request");

receive(my_server, &msg);

// assume "token"

do_cr();

send(my_server, "token");

do_non_cr();

}

Pseudocode for server process:
bool need_token = false;

if (my_id == first)

send(next_server, "token");

while (true) {

receive(ANY, &msg);

if (msg == "request")

need_token = true;

else { // assume "token"

if (msg.sender == my_client) {

need_token = false;

send(next_server, "token");

}

else if (need_token)

send(my_client, "token");

else

send(next_server, "token");

}

}
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Synchronization Mechanisms — Recap

• Low-level ways of synchronizing — using shared variables only, using TSL

instruction. All seem tedious and inefficient.

• “Synchronization mechanisms” are more-abstract ways of coordinating what

processes do. A key point is providing something that potentially makes a

process wait. Examples include semaphores, monitors, message passing.

Often built using something lower-level.
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Minute Essay

• Alleged joke (from some random Usenet person):

A man’s P should exceed his V else what’s a sema for?

Do you understand this? (Remember that P is “down” and V is “up”.)
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Minute Essay Answer

• It’s a pun. The idea is roughly that if you never have a situation in which

you’ve attempted more “down” operations than “up” operations, you didn’t

need a semaphore. (Or that’s what I think it means. The author might have

another idea!)


