
CSCI 3323 September 20, 2017

Slide 1

Administrivia

• Homework 1 written problems graded. I really do mean for you to write, on

every homework, the Honor Code pledge (or “pledged”) and something about

collobaration (“worked alone” if none). You lose up to a point otherwise.

• (If you weren’t in one of my classes last year, but you were in another class

earlier . . . Spring 2016 was eventful for me, but the end result seems good.)

• Reminder/extension: Homework 2 written problems due Monday,

programming problem(s) due Wednesday.

Slide 2

Minute Essay From Last Lecture

• Some people were more or less on the right track, others weren’t. Might be

worth mentioning that of course(?) at any point in the program you can’t have

completed more downs than the number of completed ups, plus the

semaphore’s initial value, but if there’s no time when you called down on a

semaphore with value 0 then maybe you didn’t need one? (As with so many

things, too much attention to details takes some of the fun out of the alleged

joke?)

• (And why do we groan at puns? I do too, and I like them!)



CSCI 3323 September 20, 2017

Slide 3

O/S Versus Application Programs — Recap/Review

• Should seem reasonable to make distinction between what O/S can do and

what application programs can do.

• But how to enforce that? i.e., how to make it as difficult as possible for buggy

or malicious application programs to do what they shouldn’t?

Can this problem be solved completely by clever programming? Consider that

most current systems can be asked to load and execute machine-level

application code . . .

Slide 4

O/S Versus Application Programs, Continued

• If you don’t allow that — how do you decide what’s okay?

• If you do allow loading and executing arbitrary code, then some sort of

hardware mechanism for limiting what it can do seems like the only way. This

is the problem “dual-mode operation” is intended to solve.



CSCI 3323 September 20, 2017

Slide 5

O/S Versus Application Programs, Continued

• At hardware level, then, need to keep track of which mode we’re in and use

that information to allow/disallow certain operations (and maybe memory

accesses — though that could be a separate problem/solution).

• To do this efficiently — single bit in a register somewhere, probably a

special-purpose one, checked by “privileged” instructions.

• What happens if unprivileged program tries . . . ? Hardware version of

exception — interrupt.

• How to set this bit? privileged operation, or no?

Slide 6

O/S Versus Application Programs, Continued

• But if setting the “privileged okay” bit is itself privileged, how do you ever get

from unprivileged to privileged?

• A solution: Include instruction to generate interrupt, and have hardware, on

interrupt, transfer control to a fixed location and set the “privileged” bit. If

what’s at the fixed location is O/S code, then it can do more checking (e.g.,

passwords). (This is what’s behind “system calls”.)

• Now, if what’s at that fixed location is not O/S code . . . (So you probably don’t

want that!)



CSCI 3323 September 20, 2017

Slide 7

O/S Versus Application Programs, Continued

• So maybe we need memory protection too? but we probably needed that

anyway.

• How to make memory protection work? more about that later, but for now —

again, seems like the only way to do this reliably and efficiently is with help

from hardware.

• Most (many?) schemes for memory protection involve some special-purposes

registers. Access to these registers — privileged mode or not?

Slide 8

O/S Versus Application Programs, Continued

• How about general-purpose registers? and the PC? should accessing them

be privileged, or not?

• (Consider what the processor is actually doing — executing instructions.)



CSCI 3323 September 20, 2017

Slide 9

System Calls

• In Homework 1 I ask you to run strace and look at its output. The

functions it lists are “wrappers” for system calls, and while there should be

man pages for all of them, sometimes the description isn’t that helpful without

more background than you have.

• (Look at a few that many people looked at?)

Slide 10

Classical IPC Problems — Review

• Literature (and textbooks) on operating systems talk about “classical

problems” of interprocess communication.

• Idea — each is an abstract/simplified version of problems O/S designers

actually need to solve. Also a good way to compare ease-of-use of various

synchronization mechanisms.

• Examples so far — mutual exclusion, bounded buffer.

• Other examples sometimes described in silly anthropomorphic terms, but

underlying problem is a simplified version of something “real”.



CSCI 3323 September 20, 2017

Slide 11

Dining Philosophers Problem

• Scenario (originally proposed by Dijkstra, 1972):

– Five philosophers sitting around a table, each alternating between thinking

and eating.

– Between every pair of philosophers, a fork; philosopher must have two

forks to eat.

– So, neighbors can’t eat at the same time, but non-neighbors can.

• Why is this interesting or important? It’s a simple example of something more

complex than mutual exclusion — multiple shared resources (forks),

processes (philosophers) must obtain two resources together. (Why five?

smallest number that’s “interesting”.)

Slide 12

Dining Philosophers — Naive Solution

• Naive approach — we have five mutual-exclusion problems to solve (one per

fork), so just solve them.

• Does this work? No — deadlock possible.



CSCI 3323 September 20, 2017

Slide 13

Dining Philosophers — Simple Solution

• Another approach — just use a solution to the mutual exclusion problem to let

only one philosopher at a time eat.

• Does this work? Well, it “works” w.r.t. meeting safety condition and no

deadlock, but it’s too restrictive.

Slide 14

Dining Philosophers — Dijkstra Solution

• Another approach — use shared variables to track state of philosophers and

semaphores to synchronize.

• I.e., variables are

– Array of five state variables (states[5]), possible values

thinking, hungry, eating. Initially all thinking.

– Semaphore mutex, initial value 1, to enforce one-at-a-time access to

states.

– Array of five semaphores self[5], initial values 0, to allow us to make

philosophers wait.

• And then the code is somewhat complex . . .



CSCI 3323 September 20, 2017

Slide 15

Dining Philosophers — Code

• Shared variables as on previous slide.

Pseudocode for philosopher i:
while (true) {

think();

down(mutex);

state[i] = hungry;

test(i);

up(mutex);

down(self[i]);

eat();

down(mutex);

state[i] = thinking;

test(right(i));

test(left(i));

up(mutex);

}

Pseudocode for function:
void test(i)

{

if ((state[left(i)] != eating) &&

(state[right(i)] != eating) &&

(state[i] == hungry))

{

state[i] = eating;

up(self[i]);

}

}

Slide 16

Dining Philosophers — Dijkstra Solution Works?

• Could there be problems with access to shared state variables?

• Do we guarantee that neighbors don’t eat at the same time?

• Do we allow non-neighbors to eat at the same time?

• Could we deadlock?

• Does a hungry philosopher always get to eat eventually?



CSCI 3323 September 20, 2017

Slide 17

Dining Philosophers — Chandy/Misra Solution

• Original solution allows for scenarios in which one philosopher “starves”

because its neighbors alternate eating while it remains hungry.

• Briefly, we could improve this by maintaining a notion of “priority” between

neighbors, and only allow a philosopher to eat if (1) neither neighbor is eating,

and (2) it doesn’t have a higher-priority neighbor that’s hungry. After a

philosopher eats, it lowers its priority relative to its neighbors.

Slide 18

Other Classical Problems

• Readers/writers (in textbook).

• Sleeping barber, drinking philosophers, . . .

• Advice — if you ever have to solve problems like this “for real”, read the

literature . . .



CSCI 3323 September 20, 2017

Slide 19

Minute Essay

• TBA


