CSCI 3323 September 27, 2017

Administrivia

o Reminder: Homework 2 programming problem(s) due today.

e Homework 3 on the Web; due next week.

Slide 1
Minute Essay From Last Lecture
e Many people found the last problem noteworthy in some way — some found it
interesting, others “tricky”, etc. | think that’s all good!
(And it will be interesting for me to find out what you came up with?)
Slide 2

CSCI 3323 September 27, 2017

Deadlocks — Introduction

® Some resources should not be shared — among processes, computers, etc.

e To enforce this, O/S (or whatever) provides mechanism to give one process at

a time exclusive use, make others wait.

e Possibility exists that others will wait forever — deadlock.
Slide 3

Resources

e “Resource” is anything that should be used by only one process at a time —
hardware device, piece of information (e.g., database record), etc.

Can be unique (e.g, particular database record) or non-unique (e.g., one
block of a fixed-size disk area such as swap space).

Slide 4 e Preemptible versus non-preemptible — preemptible resources can be taken
away from current owner without causing something to fail (e.g., memory);

non-preemptible resources can't (e.g., hardware device).
e Normal sequence for using a resource — request it, use it, release it. If not
available when requested, block or busy-wait.

Can easily implement this using semaphores, but then deadlock is possible if
processes aren’t disciplined.

. J

CSCI 3323

Slide 5

Slide 6

September 27, 2017

Deadlocks — Definitions and Conditions

for an event that only another process in set can cause.

e Necessary conditions:

time.

— Circular wait — circular chain of processes exists in which each p
waiting for resource held by next.

o Modeling deadlock — “resource graphs” (examples in textbook).

o What do about them? Various approaches.

_

e Definition — set of processes is “deadlocked” if each process in set is waiting

— Mutual exclusion — resources can be used by at most one process at a

— Hold and wait — process holding one resource can request another.

— No preemption — resources cannot be taken away but must be released.

~N

rocess is

(What To Do About Deadlocks — Nothing

e One strategy for dealing with deadlocks — “ostrich algorithm” (ignore
potential for deadlocks, hope they don’t happen).

e Does this work?

CSCI 3323 September 27, 2017

Do Nothing, Continued

e Doesn’t always work, of course.

e But simple to implement, and in practice works most of the time.

Slide 7

(What To Do About Deadlocks — Detection and Recovery\

How to detect deadlocks — DFS on resource graph, (or if more than one

resource of each type, algorithm from text).

When to check for deadlocks:

— Every time a resource is requested.
Slide 8 — At regular intervals.

— When CPU utilization falls below threshold.

What to do if deadlock is found?
— Preemption.
— Rollback.

— Process termination.

Does this work?

CSCI 3323 September 27, 2017

Detection and Recovery, Continued

o Does work.

e But potentially time-consuming, and “what to do” choices aren’t very
attractive!

Slide 9

4 What To Do About Deadlocks — Avoidance

e Can base on idea of “safe” states (in which it's possible to schedule to avoid
deadlock) versus “unsafe” states (in which it's not). Idea is to avoid unsafe
states. (Details in textbook.)

e “Banker’s algorithm” (Dijkstra, 1965) — idea is to never satisfy request for
Slide 10 resource if it leads to unsafe state. (Details in textbook.)

o Does this work?

CSCI 3323 September 27, 2017

Avoidance, Continued

o Does work.

e But not much used because it assumes a fixed number of processes,
resource requirements known in advance.

Slide 11

4 What To Do About Deadlocks — Prevention

e |dea here is to make it impossible to satisfy one of the four conditions for
deadlock:

— Mutual exclusion — don’t allow more than one process to use a resource.

E.g., define a printer-spool process to manage printer.

Slide 12 — Hold and wait — require processes to request all resources at the same
time and either get them all or wait.

— No preemption — allow preemption.
— Circular wait — impose strictly increasing ordering on resources, and insist

that all processes request resources “in order”.

e Do these work?

CSCI 3323 September 27, 2017

Prevention, Continued

e Don't allow more than one process to use a resource:

Solves immediate problem but may produce others.

Require processes to request all resources at the same time and either get

them all or wait:

Slide 13 Works but may not be possible or efficient.

Allow preemption.

Not usually possible/desirable.

Impose strictly increasing ordering on resources, and insist that all processes

request resources “in order”.

Works, but finding an ordering may be difficult.

Deadlocks — Related Issues

o Classical description is in terms of “resources”, but other kinds of deadlock

are possible (e.g., involving communication).

e Other situations that aren’t classical deadlock but are also not good include
“livelock” and “starvation” (see textbook).

Slide 14

CSCI 3323 September 27, 2017

Deadlocks — Summary

e Take-home message — there’s some interesting theory related to this topic,
but not a lot of practical advice, except for deadlock prevention.

Slide 15

Memory Management — Preview

e One job of operating system is to “manage memory” — assign sections of
main memory to processes, keep track of who has what, protect processes’
memory from other processes.

e As with CPU scheduling, we’ll look at several schemes, starting with the very
Slide 16 simple. For each scheme, think about how well it solves the problem, how it
compares to others.

e As with processes, there’s a tradeoff between simplicity and providing a nice
abstraction to user programs.

CSCI 3323 September 27, 2017

o What's the smallest number of resources needed to have a deadlock?

e The programming problem for Homework 3 asks you to fill in blanks in some
C++ starter code. It uses st rings and vectors. Are you reasonably

familiar with these?

Slide 17

e Two — with only one, a process may wait a long time for another process to

release it, but that’s not true deadlock.

Slide 18

