
CSCI 3323 September 27, 2017

Slide 1

Administrivia

• Reminder: Homework 2 programming problem(s) due today.

• Homework 3 on the Web; due next week.

Slide 2

Minute Essay From Last Lecture

• Many people found the last problem noteworthy in some way — some found it

interesting, others “tricky”, etc. I think that’s all good!

(And it will be interesting for me to find out what you came up with?)



CSCI 3323 September 27, 2017

Slide 3

Deadlocks — Introduction

• Some resources should not be shared — among processes, computers, etc.

• To enforce this, O/S (or whatever) provides mechanism to give one process at

a time exclusive use, make others wait.

• Possibility exists that others will wait forever — deadlock.

Slide 4

Resources

• “Resource” is anything that should be used by only one process at a time —

hardware device, piece of information (e.g., database record), etc.

Can be unique (e.g, particular database record) or non-unique (e.g., one

block of a fixed-size disk area such as swap space).

• Preemptible versus non-preemptible — preemptible resources can be taken

away from current owner without causing something to fail (e.g., memory);

non-preemptible resources can’t (e.g., hardware device).

• Normal sequence for using a resource — request it, use it, release it. If not

available when requested, block or busy-wait.

Can easily implement this using semaphores, but then deadlock is possible if

processes aren’t disciplined.



CSCI 3323 September 27, 2017

Slide 5

Deadlocks — Definitions and Conditions

• Definition — set of processes is “deadlocked” if each process in set is waiting

for an event that only another process in set can cause.

• Necessary conditions:

– Mutual exclusion — resources can be used by at most one process at a

time.

– Hold and wait — process holding one resource can request another.

– No preemption — resources cannot be taken away but must be released.

– Circular wait — circular chain of processes exists in which each process is

waiting for resource held by next.

• Modeling deadlock — “resource graphs” (examples in textbook).

• What do about them? Various approaches.

Slide 6

What To Do About Deadlocks — Nothing

• One strategy for dealing with deadlocks — “ostrich algorithm” (ignore

potential for deadlocks, hope they don’t happen).

• Does this work?



CSCI 3323 September 27, 2017

Slide 7

Do Nothing, Continued

• Doesn’t always work, of course.

• But simple to implement, and in practice works most of the time.

Slide 8

What To Do About Deadlocks — Detection and Recovery

• How to detect deadlocks — DFS on resource graph, (or if more than one

resource of each type, algorithm from text).

• When to check for deadlocks:

– Every time a resource is requested.

– At regular intervals.

– When CPU utilization falls below threshold.

• What to do if deadlock is found?

– Preemption.

– Rollback.

– Process termination.

• Does this work?



CSCI 3323 September 27, 2017

Slide 9

Detection and Recovery, Continued

• Does work.

• But potentially time-consuming, and “what to do” choices aren’t very

attractive!

Slide 10

What To Do About Deadlocks — Avoidance

• Can base on idea of “safe” states (in which it’s possible to schedule to avoid

deadlock) versus “unsafe” states (in which it’s not). Idea is to avoid unsafe

states. (Details in textbook.)

• “Banker’s algorithm” (Dijkstra, 1965) — idea is to never satisfy request for

resource if it leads to unsafe state. (Details in textbook.)

• Does this work?



CSCI 3323 September 27, 2017

Slide 11

Avoidance, Continued

• Does work.

• But not much used because it assumes a fixed number of processes,

resource requirements known in advance.

Slide 12

What To Do About Deadlocks — Prevention

• Idea here is to make it impossible to satisfy one of the four conditions for

deadlock:

– Mutual exclusion — don’t allow more than one process to use a resource.

E.g., define a printer-spool process to manage printer.

– Hold and wait — require processes to request all resources at the same

time and either get them all or wait.

– No preemption — allow preemption.

– Circular wait — impose strictly increasing ordering on resources, and insist

that all processes request resources “in order”.

• Do these work?



CSCI 3323 September 27, 2017

Slide 13

Prevention, Continued

• Don’t allow more than one process to use a resource:

Solves immediate problem but may produce others.

• Require processes to request all resources at the same time and either get

them all or wait:

Works but may not be possible or efficient.

• Allow preemption.

Not usually possible/desirable.

• Impose strictly increasing ordering on resources, and insist that all processes

request resources “in order”.

Works, but finding an ordering may be difficult.

Slide 14

Deadlocks — Related Issues

• Classical description is in terms of “resources”, but other kinds of deadlock

are possible (e.g., involving communication).

• Other situations that aren’t classical deadlock but are also not good include

“livelock” and “starvation” (see textbook).



CSCI 3323 September 27, 2017

Slide 15

Deadlocks — Summary

• Take-home message — there’s some interesting theory related to this topic,

but not a lot of practical advice, except for deadlock prevention.

Slide 16

Memory Management — Preview

• One job of operating system is to “manage memory” — assign sections of

main memory to processes, keep track of who has what, protect processes’

memory from other processes.

• As with CPU scheduling, we’ll look at several schemes, starting with the very

simple. For each scheme, think about how well it solves the problem, how it

compares to others.

• As with processes, there’s a tradeoff between simplicity and providing a nice

abstraction to user programs.



CSCI 3323 September 27, 2017

Slide 17

Minute Essay

• What’s the smallest number of resources needed to have a deadlock?

• The programming problem for Homework 3 asks you to fill in blanks in some

C++ starter code. It uses strings and vectors. Are you reasonably

familiar with these?

Slide 18

Minute Essay Answer

• Two — with only one, a process may wait a long time for another process to

release it, but that’s not true deadlock.


