
CSCI 3323 October 16, 2017

Slide 1

Administrivia

• (None?)

Slide 2

Homework 1 Programming Problem, Revisited

• What most people turned in was not bad — most (but not all!) of you figured

out what information to pass to the two system-call functions. (Review briefly.)

• What almost no one got, though, was what happens if execve fails!



CSCI 3323 October 16, 2017

Slide 3

Homework 1 Programming Problem, Revisited

• The simple shell you wrote in this assignment created a new process for each

command, using fork(), which creates a full copy of the calling process,

including its program counter, with the intent of using this process to run the

desired command. So now you have two processes, a “parent” and a

“child” . . .

• The parent process should then wait for the child to complete (successfully or

not) and then continue with the next command.

• Meanwhile, the child process should use execve to — what? If it succeeds,

it discards the running program (a copy of the parent process) and executes

the program from the specified file, terminating when it’s done. What if it

doesn’t succeed? The existing program keeps running. “Oops”? Does this

explain behavior that — were you puzzled?

Slide 4

Memory Management — Review

• The problem we’re solving: Partition physical memory among processes. Two

related issues (program relocation and memory protection) both nicely solved

by defining “address space” abstraction and implementing with help from

hardware (MMU).

• Contiguous-allocation schemes are simple but not very flexible.

• Paging is more flexible but more complex.



CSCI 3323 October 16, 2017

Slide 5

Paging — Recap

• Idea — divide both address spaces and memory into fixed-size blocks

(“pages” and “page frames”), allow non-contiguous allocation.

• Makes for a much more flexible system but at a cost in complexity — keeping

track of a process’s memory requires a “page table” to be used by both

hardware (MMU) and software (O/S).

Slide 6

Page Tables — Performance Issues

• One possibility is to keep the whole page table for the current process in

registers. Could possibly use general-purpose registers for this but likely

would not. Should make for fast translation of addresses, but — is this really

feasible for a large table? and what about context switches?

• Another possibility is to keep the process table in memory and just have one

register (probably a special-purpose one) point to it. Cost/benefit tradeoffs

here seem like the opposite of the first scheme, no?

The big downside is slow lookup. Can be mitigated with a “translation

lookaside buffer” (TLB) — special-purpose cache.



CSCI 3323 October 16, 2017

Slide 7

Paging — Feasibility Issues

• Clearly page tables can be big, if we want them all to be the same size

(probably) and big enough to represent the system’s maximum address

space (also probably).

• How to make this feasible? some possibilities, based on the observation that

the number of valid page table entries (ones that point to a page frame) is

manageable (in contrast to the number of total potential page table entries).

Slide 8

Multi-Level Page Tables

• Idea here is make page tables hierarchical in a sense:

• Each entry in the top-level table represents a range of pages. If no valid

pages in that range, entry is “invalid”; else it points to a lower-level table. Only

lowest-level tables reference actual page frames.

• In principle, can have arbitrarily many levels, though in practice it depends on

what MMU allows.

• Lookup is slower than with a single level (think about why), but again the TLB

idea should help.



CSCI 3323 October 16, 2017

Slide 9

Inverted Page Tables

• Idea here is to map not from page number to page frame number but the

other way around.

• So, in this scheme there’s one combined table (rather than one per process),

indexed by page frame number, with entries containing a process ID and a

page number.

• Seems like then lookups would be quite slow — potentially have to search the

whole table — but a clever implementation could/would have some way to

make it fast.

• Potentially more difficult to implement efficiently, so at one time not used

much. Coming back with 64-bit addressing?

Slide 10

Paging and Virtual Memory

• Idea — if we don’t have room for all pages of all processes in main memory,

keep some on disk (“pretend we have more memory than we really do”).

• Or a simpler view: All address spaces live in secondary memory / swap space

/ backing store, and we “page in” as needed (demand paging).

• (Aside: Why are we even bothering? Can’t the processor(s) access disk?

Yes, but . . . )

• Making this work requires help from both hardware (MMU) and software

(operating system).



CSCI 3323 October 16, 2017

Slide 11

Page Fault Interrupts

• We said MMU should generate a “page fault” interrupt for a page that’s not

present in real memory. What happens then? It’s an interrupt, so . . .

• Control goes to an interrupt handler. What should it do? (Are there different

possibilities for what caused the page faults?)

Slide 12

Page Fault Interrupts, Continued

• One possible cause — an address that’s not valid. You know (sort of) what

happens then . . .

• Another cause — an address that’s valid, but the page is on disk rather than

in real memory. So — do I/O to read it in. Where to put it? If there’s a free

page frame, choice is easy. What if there’s not?



CSCI 3323 October 16, 2017

Slide 13

Finding A Free Frame — Page Replacement Algorithms

• Processing a page fault can involve finding a free page frame. Would be easy

if the current set of processes aren’t taking up all of main memory, but what if

they are? Must steal a page frame from someone. How to choose one?

• Several ways to make choice (as with CPU scheduling) — “page replacement

algorithms”.

• “Good” algorithms are those that result in few page faults. (What happens if

there are many page faults?)

• Choice usually constrained by what MMU provides (though that is influenced

by what would help O/S designers).

• Many choices (no surprise, right?) . . . (To be continued.)

Slide 14

Minute Essay

• If you even remember doing Homework 1 — did you notice the

somewhat-strange behavior when a command wasn’t found?


