
CSCI 3323 October 23, 2017

Slide 1

Administrivia

• Reminder: Homework 4 due Wednesday. Homework 5 written problems due

next Monday, programming problems next Wednesday.

Slide 2

Minute Essay From Last Lecture

• Most people thought the exam was more or less what they expected. Good?

• (Review answer to other question.)



CSCI 3323 October 23, 2017

Slide 3

“Thrashing”

• Recall the notion of a process’s “working set” — portion of its address space

currently in use.

• Q: What happens if the combined sizes of all active processes’ working sets

is too big for RAM?

• A: Pretty much what the sysadmins in my minute-essay story observed —

system will spend so much time paging it can’t do much else.

Slide 4

Paging and Virtual Memory — Recap/Review

• Basic idea is fairly simple: If there are more pages in the union of all process’s

address spaces than will fit into main memory, keep some (we hope the

less-active ones) on disk.

• With this addition, page faults now either mean “invalid address” or “page not

in memory but on disk”. Page-fault interrupt handler must decide which, and if

it’s the latter, arrange to bring it in. Similar processing if we want to give a

process a new page.

• If memory is not full, not too hard, but if it is? “Steal” a frame from its current

owner (write contents to disk first if need be). Choice of page to steal

determined by “page replaccment algorithm”.

• Many such algorithms possible. (Slides from last time — revised a bit.)



CSCI 3323 October 23, 2017

Slide 5

Paging — Other Design Issues/Choices

• Demand paging versus prepaging.

• Global versus local allocation.

• “Paging daemon” that tries to keep a supply of free page frames.

• What to do if page to be replaced is waiting for I/O — probably trouble if we

replace it anyway, since the pending I/O, when it completes, may write to a

physical address. Solutions include “locking” pages, or doing all I/O to O/S

pages and then moving data to user pages.

Slide 6

Modeling Page Replacement Algorithms

• Intuitively obvious that more memory leads to fewer page faults, right? Not

always!

• Counterexample — “Belady’s anomaly”, sparked interest in modeling page

replacement algorithms.

• Modeling based on simplified version of reality — one process only, known

inputs. Can then record “reference string” of pages referenced.

• Given reference string, p.r.a., and number of page frames, we can calculate

number of page faults. (One of the programming problems will ask you to do

this.)

• How is this useful? can compare different algorithms, and also determine if a

given algorithm is a “stack algorithm” (more memory always means fewer

page faults).



CSCI 3323 October 23, 2017

Slide 7

Sharing Pages

• Shared pages can be useful, but can also present problems.

• Multiple processes running the same program is relatively easy (why?) but

has one potential downside (what?)

• UNIX fork system call is — interesting in this context. POSIX definition

says that child process’s address space is basically a copy of the parent’s

address space. What’s the easy-to-implement way to do this? What downside

does that have in current systems? Is there a way to reduce its impact? And

why duplicate in the first place?

Slide 8

Sharing Pages and fork

• Duplicating pages is easy but inefficient, especially if the child process is

going to call execve or something similar right away. Some systems use

“copy-on-write” to improve efficiency.

• Why did the people who designed UNIX require this duplication . . . Possibly

because it makes some things easy (such as setting up parent/child pipes)

and wasn’t very costly when designed. Windows’s system call for creating

processes takes a different approach. Maybe that’s better!



CSCI 3323 October 23, 2017

Slide 9

Sharing Pages, Continued

• One use for shared pages is multiple processes running the same program.

• What about sharing code at a level below whole programs (UNIX “shared

libraries”, Windows DLLs)?

Slide 10

Shared Libraries

• One attraction is somewhat obvious — if code for library functions (e.g.,

printf) is statically linked into every program that uses it, programs need

more memory — seems wasteful if processes can share one copy of code in

memory.

• Another attraction is that library code can be updated independently of

programs that use it. (But is there a downside to that?)

• How to make this happen . . .



CSCI 3323 October 23, 2017

Slide 11

Shared Libraries, Continued

• A good-and-bad aspect is that if the shared code is updated, all programs that

use it are affected.

• How to make this happen . . . At link time, programs get “stub” versions of

functions. References to real versions resolved at load time.

• Resolving references to shared code at load time — finer-grained version of

“relocation problem”, no? and fixable by making sure library contains only

“position-independent code”.

• (Possibly some details of how this plays out in Linux next time?)

Slide 12

Memory-Mapped File I/O

• Worth mentioning here that some systems also provide a mechanism (e.g.,

via system calls) to allow reading/writing whole files into/from memory. If

there’s enough memory, this could improve performance.

• Example of how this works in Linux — man page for mmap.



CSCI 3323 October 23, 2017

Slide 13

One More Memory Management Strategy —

Segmentation

• Idea — make program address “two-dimensional” / separate address space

into logical parts. So a virtual address has two parts, a segment and an offset.

• To map virtual address to memory location, need “segment table”, like page

table except each entry also requires a length/limit field. (So this is like a

cross between contiguous-allocation schemes and paging.)

Slide 14

Segmentation, Continued

• Benefits?

– Nice abstraction; nice way to share memory.

– Flexible use of memory — can have many areas that grow/shrink as

required, not just heap and stack — especially if we combine with paging.

• Drawbacks?

– External fragmentation possible (can offset by also paging).

– More complex.

– “Paging” in/out more complex — issues similar to with

contiguous-allocation.



CSCI 3323 October 23, 2017

Slide 15

Minute Essay

• I’m planning one more lecture on memory management, to include some

details about shared libraries in UNIXworld and an overview of how memory

management is done in a few real-world systems. Anything else you’d like to

hear about?


