
CSCI 3323 October 25, 2017

Slide 1

Administrivia

• Reminder: Homework 4 due today, Homework 5 written problems Monday.

Homework 5 second programming problem still in work; I will send e-mail

(tomorrow?).

Slide 2

Minute Essay From Last Lecture

• One person asked about hot new ideas in memory management. Good

question.

• The discussion in the textbook (section 3.8) confirms what would have been

my guess — at least of the time of its writing, memory management was

pretty a solved problem, though there’s some work being done in adapting to

changes in hardware, such as SSDs.



CSCI 3323 October 25, 2017

Slide 3

Shared Libraries in UNIXworld

• (Later?)

Slide 4

Memory Protection, Revisited

• Paging provides one form of memory protection: If a given page in memory

isn’t mapped to some page in a process’s address space via its page table,

the process can’t access the page at all.

• But that’s “all or nothing”, and sometimes it would be useful to have more

control. Some MMU hardware supports page table entries that in addition to

R and M bits have . . .

• A “read-only” bit that’s what its name suggests. So for example there might be

a page that’s accessible (for reading) to all processes but is writeable only by

the O/S.

• An “execution allowed” bit that means it’s okay for the processor to fetch

instructions from this page. Very useful in defending against classic

buffer-overflow attacks (by not setting this bit for stack pages)!



CSCI 3323 October 25, 2017

Slide 5

Memory Management in Windows

• Apparently very complex, but basic idea is paging.

• Intraprocess memory management is in terms of code regions (some shared

— DLLs), data regions, stack, and area for o/s. “Virtual Address Descriptor”

for each contiguous group of pages tracks location on disk, etc.

• Memory-mapped files can make I/O faster and allow processes to (in effect)

share memory.

• Demand-paged, with six (!) background threads that try to maintain a store of

free page frames. Page replacement algorithm is based on idea of working

set.

Slide 6

Memory Management in UNIX/Linux

• Very early UNIX used contiguous-allocation or segmentation with swapping.

Later versions use paging. Linux uses multi-level page tables; details depend

on architecture (e.g., three levels for Alpha, two for Pentium).

• Intraprocess memory management is in terms of text (code) segment, data

segment, and stack segment. Linux reserves part of address space for O/S.

For each contiguous group of pages, “vm area struct” tracks location on disk,

etc.

• Memory-mapped files can make I/O faster and allow processes to (in effect)

share memory.

• Demand-paged, with background process (“page daemon”) that tries to

maintain a store of free page frames. Page replacement algorithms are

mostly variants of clock algorithm.



CSCI 3323 October 25, 2017

Slide 7

Files and Filesystems — Overview

• Very abstract view — requirements for long-term information storage are:

– Store large amounts of information.

– Have information survive past end of creating process.

– Allow concurrent access by multiple processes.

• Usual solution — “files” on disk and other external media, organized into “file

systems”.

• In terms of the two views of an O/S:

– “Virtual machine” view — filesystem is important abstraction.

– “Resource manager” view — filesystem manages disk (and other I/O

device) resources.

• We’ll look first at the user view, then at implementation.

Slide 8

File Abstraction

• Many, many aspects of “file abstraction” — name, type, ownership, etc., etc.

Most involve choices/tradeoffs.

• In the following slides, a quick tour of some of the major ones, with some of

the possible variations.



CSCI 3323 October 25, 2017

Slide 9

File Abstraction, Continued

• File names — always “text string”, but some choices: maximum length?

case-sensitive? ASCII or Unicode? “extension” required?

• File structure — how file appears to application program:

– Unstructured sequence of bytes — maximum flexibility, but maybe more

work for application.

– Sequence of fixed-length records — widely used in older systems, not

much any more.

– Tree (or other) structure supporting access by key.

Slide 10

File Abstraction, Continued

• File types — include “regular files”, also directories and (in some systems,

such as UNIX) “special files”. Regular files subdivide into:

– ASCII files — sequences of ASCII characters, generally separated into

lines by line-end character(s).

– Binary files — everything else, including executables, various archives, MS

Word format, etc., etc. Most have some structure, defined by the

expectations of the program(s) that work with them — applications for

some types, operating system for executables.

• File access — sequential versus random-access.

• File attributes — “other stuff” associated with file (owner, protection info, time

of creation / last use, etc.)



CSCI 3323 October 25, 2017

Slide 11

File Abstraction, Continued

• File operations (things one can do to a file) include create, delete, open,

close, read, write, get attributes, set attributes. Example program using

low-level wrappers for system calls on p. 274.

• Many systems also support operations for “memory-mapped files” (read

whole file into memory, process there, write back out — as mentioned in

previous discussion of memory management).

Slide 12

Directory/Folder Abstraction

• Basic idea — way of grouping / keeping track of files. Can be

– Single-level (simple but restrictive).

– Two-level (almost as simple, better than single-level if multiple users, but

also restrictive).

– Hierarchical.

• Implies need for path names, which can be absolute or relative (to “working

directory”).

• “Hierarchical” implies a tree structure, but one could include support for

something to allow a more-general directed graph (more later). Might be

useful as a way to easily share files among users.

• Operations on directories include create, delete, open, close, read, add entry,

remove entry, link, unlink.



CSCI 3323 October 25, 2017

Slide 13

Minute Essay

• Anything noteworthy about Homework 4?


