
CSCI 3323 October 30, 2017

Slide 1

Administrivia

• Reminder: Homework 5 written problems due today.

• Homework 5 programming problems now on the Web (complete version); due

next Monday.

Slide 2

Minute Essay From Last Lecture

• Many people mentioned that the homework problems helped them

understand material. Good! that’s the goal.

• One person said “hadn’t really thought about this stuff before”. Also a good

result? and one person said “made me think” — a very good result.



CSCI 3323 October 30, 2017

Slide 3

Filesystem Implementation — Overview

• Last time we talked about many aspects of filesystem abstraction. After

making decisions about what to implement — how?

• Recall(?) basic organization of disk:

– Master boot record (includes partition table)

– Partitions, each containing boot block and lots more blocks. Abstract view

of access to disk is in terms of reading/writing specified block.

• How to organize/use those “lots more blocks”? Must keep track of which

blocks are used by which files, which blocks are free, directory info, file

attributes, etc., etc.

Typically start with superblock containing basic info about filesystem, then

some blocks with info about free space and what files are there, then the

actual files.

Slide 4

Implementing Files

• One problem is keeping track of which disk blocks belong to which files.

• No surprise — there are several approaches. (All assume some outside

“directory”-type structure with some information about each file — a starting

block, e.g.)



CSCI 3323 October 30, 2017

Slide 5

Implementing Files — Contiguous Allocation

• Key idea — what the name suggests, much like analogous idea for memory

management.

• How well does it work? consider simplicity, speed (both sequential and

random access), possibility of fragmentation (wasted space).

• Widely used long ago, abandoned, but now maybe useful again.

Slide 6

Implementing Files — Linked-List Allocation

• Key idea — organize each file’s blocks as a linked list, with pointer to next

block stored within block.

• How well does it work? consider simplicity, speed (both sequential and

random access), possibility of fragmentation (wasted space).



CSCI 3323 October 30, 2017

Slide 7

Implementing Files — Linked-List Allocation With Table

In Memory

• Key idea — keep linked-list scheme, but use table in memory (File Allocation

Table or FAT) for pointers rather than using part of disk blocks.

• How well does it work? consider simplicity, speed (both sequential and

random access), possibility of fragmentation (wasted space).

Slide 8

Implementing Files — I-Nodes

• Key idea — associate with each file a data structure (“index node” or i-node)

containing file attributes and disk block numbers, keep in memory for “open”

files.

• How well does it work? consider simplicity, speed (both sequential and

random access), possibility of fragmentation (wasted space).



CSCI 3323 October 30, 2017

Slide 9

Implementing Filesystems — File Attributes

• Another issue is where to keep file “attributes” (owner, timestamps, etc.).

• One way is to keep it in directory.

• Another way is to keep it elsewhere, e.g., in i-node.

Slide 10

Filesystem Implementation — Directories

• Many things to consider here — whether to keep attribute information in

directory, whether to make entries fixed or variable size, etc.

• If directory abstraction is basically hierarchical but allows some way of

creating a non-tree directed graph, must figure out how to do that. Windows

has “shortcuts”; UNIX has “hard links” (in which different directory entries

point to a common structure describing the file) and “soft (symbolic) links” (in

which the link is a special type of file).



CSCI 3323 October 30, 2017

Slide 11

Virtual File Systems

• Apparently many possibilities for implementing filesystem abstraction, with the

usual tradeoffs. Do we have to choose one, or can different types coexist?

The latter . . .

• In Windows, having different filesystems on different logical drives is

managed via drive letters.

• In UNIX, current approach is usually a “virtual file system” — basically, an

extra layer of abstraction (remember the adage about how that can solve any

programming problem).

Slide 12

Log-Structured Filesystems

• Log-structured filesystem — everything is written to log, and only to log. That

sounds impractical, but . . .

• Key idea is that these many disk reads are satified from cache anyway, and

lots of small writes to disk give poor performance, so it makes more sense to

just write (to cache) a log, and periodically save that to disk.

• Not used much, though, because incompatible with other file systems.

Instead . . .



CSCI 3323 October 30, 2017

Slide 13

Journaling Filesystems — Overview

• As we’ll discuss later (and as you may know!) — O/S sometimes doesn’t

perform “write to disk” operations right away (caching).

• One result is likely improved performance. Another is potential filesystem

inconsistency — operations such as “move a block from the free list to a file”

are no longer atomic.

• Idea of journaling filesystem — do something so we can regard updates to

filesystem as atomic.

• To say it another way — record changes-in-progress in log, when complete

mark them “done”.

Slide 14

Journaling Filesystems, Continued

• Can record “data”, “metadata” (directory info, free list, etc.), or both.

• “Undo logging” versus “redo logging”:

– Undo logging: First copy old data to log, then write new data (possibly

many blocks) to disk. If something goes wrong during update, “roll back”

by copying old data from log.

– Redo logging: First write new data to log (i.e., record changes we’re going

to make), then write new data to disk. If something goes wrong during

update, complete the update using data in log.

• A key benefit — after a system crash, we should only have to look at the log

for incomplete updates, rather than doing a full filesystem consistency check.

(This can save a lot of time!)



CSCI 3323 October 30, 2017

Slide 15

Implementing Filesystems — Free Blocks

• Another issue is how to keep track of which blocks are free.

• More than one way . . .

Slide 16

Managing Free Space — Free List

• One way to track which blocks are free: list of free blocks, kept on disk.

• How this works:

– Keep one block of this list in memory.

– Delete entries when files are created/expanded, add entries when files are

deleted.

– If block becomes empty/full, replace it.



CSCI 3323 October 30, 2017

Slide 17

Managing Free Space — Bitmap

• Another way to track which blocks are free: “bitmap” with one bit for each

block on disk, also kept on disk.

• How this works:

– Keep one block of map in memory.

– Modify entries as for free list.

• Usually requires less space.

Slide 18

Filesystem Performance

• Access to disk data is much slower than access to memory — seek time plus

rotational delay plus transfer time. (Well, for disks that rotate. Solid-state

disks don’t, but they have their own issues, e.g., limits on number of writes?)

• So, file systems include various optimizations . . .



CSCI 3323 October 30, 2017

Slide 19

Improving Filesystem Performance — Caching

• Idea — keep some disk blocks in memory; keep track of which ones are there

using hash table (base hash code on device and disk address).

• When cache is full and we must load a new block, which one to replace?

Could use algorithms based on page replacement algorithms, could even do

LRU accurately — though that might be wrong (e.g., want to keep data blocks

being filled).

• When should blocks be written out?

– If block is needed for file system consistency, could write out right away. If

block hasn’t been written out in a while, also could write out, to avoid data

loss in long-running program.

– Two approaches: “Write-through cache” (Windows) — always write out

modified blocks right away. Periodic “sync” to write out (UNIX).

Slide 20

Improving Filesystem Performance — Block

Read-Ahead

• Idea — if file is being read sequentially, can read some blocks “ahead”. (Of

course, doesn’t help if file is being read non-sequentially. Decide based on

recent access patterns.)



CSCI 3323 October 30, 2017

Slide 21

Improving Filesystem Performance — Reducing Disk

Arm Motion

• Group blocks for each file together — easier if bitmap is used to keep track of

free space. If not grouped together — “disk fragmentation” may affect

performance.

• If i-nodes are being used, place them so they’re fast to get to (and so maybe

we can read an i-node and associated file block together).

Slide 22

Disk Fragmentation

• Idea — if blocks that make up a file are (mostly) contiguous, faster to read

them all. If not, “disk fragmentation”.

• How likely is disk fragmentation? Depends on filesystem, strategy for

allocating space for files.

• “Defragmenter” utility can be run to correct it. Windows comes with one.

Linux doesn’t. The claim is that UNIX and Linux filesystems typically don’t

become fragmented unless the disk is close to full.



CSCI 3323 October 30, 2017

Slide 23

Filesystems — Quotas

• Why have quotas? Disk space is cheap, right? yes, but more space used

means more to back up, and on multi-user systems there are fairness issues,

and the possibility that one careless user will negatively affect others.

• Implementation involves keeping track, for each user, of space used versus

space allowed. Must be updated every time a file is changed/created/deleted.

Some systems allow “grace period”, but eventually all will disallow, for user

over quota, creation of new files or expansion of existing files.

Slide 24

Filesystem Reliability — Consistency Checks

• Can easily happen that true state of filesystem is represented by a

combination of what’s on disk and what’s in memory — a problem if shutdown

is not orderly.

• Solution is a “fix-up” program (UNIX fsck, Windows scandisk). Kinds of

checking we can do:

– Consistency check: For each block, how many files does it appear in

(treating free list as a file)? If other than 1, problem — fix it as best we can.

– File consistency check: For each file, count number of links to it and

compare with number in its i-node. If not equal, change i-node.

– Etc., etc. — see text.



CSCI 3323 October 30, 2017

Slide 25

Minute Essay

• Anything noteworthy about Homework 5?


