
CSCI 3323 November 15, 2017

Slide 1

Administrivia

• Homework 7 on the Web. Due the Monday after the holiday. Probably the last

homework!

• (I just noticed, and fixe, the “FIXME” in the Readings section of Homework 6.

Presumably you all figured out what reading would likely be useful, but still —

that wasn’t what I meant, and I’m wondering why someone didn’t ask about it!)

Slide 2

Minute Essay From Last Lecture

• A few people said Homework 6 was easier, or at least shorter, than previous

assignments. But one said it was more difficult. (“Hm!”?) And there were even

a few who thought it was fun.

• In talking to some of you I realize that at least one of the questions was

probably ambiguous, the one about what happens to filesystem info on a

system crash. I’ll try to clarify when I make up my sample solution.



CSCI 3323 November 15, 2017

Slide 3

Character-Oriented Terminals — Recap/Review

• Hardware: Keyboard sends a character at a time. Display accepts stream of

characters, which may include “escape sequences” (to position cursor, turn

on reverse-video mode, etc.).

• Software: Can accept input in “raw” or “cooked” mode (with the latter, device

driver can do some simple line editing). Must produce output including any

needed escape sequences (which might vary by terminal type — in

UNIX-world, “termcap” can be used to hide this from application).

Example: programs using ncurses library. (I could put some on the “useful

links” page?)

Slide 4

GUI Hardware and Software — Recap/Review

• Hardware: Keyboard and mouse send very low-level events. Display at one

point was fairly low-level, but now often contains its own processors.

• Software: Framework for providing graphical interfaces may be integral to O/S

(Windows) or an add-on (UNIX/Linux).



CSCI 3323 November 15, 2017

Slide 5

Network Terminals — Hardware

• Keyboard, mouse, and display as described previously, plus local processor;

connected to remote system.

• Local processor can be very capable (X terminal, or even PC configured to

run as one) or more primitive.

Slide 6

GUI-Based Programming

• Input from keyboard and mouse captured by O/S and turned into messages

to process owning appropriate window.

• Typical structure of GUI-based program is a loop to receive and dispatch

these messages — “event-driven” style of programming.

• Details vary between Windows and X, but overall idea is similar. See example

programs in textbook. (I’ve also written programs using the fairly low-level

X11 interface, but — maybe not. But it’s doable, even from C, though of

course not completely portable.)



CSCI 3323 November 15, 2017

Slide 7

I/O in UNIX/Linux

• Access to devices provided by special files (normally in /dev/*), to provide

uniform interface for callers. Two categories, block and character. Each

defines interface (set of functions) to device driver. Associated with each

special file are major and minor device numbers, with major device number

used to locate specific function. (Look at some output of ls -l /dev.)

• For block devices, buffer cache contains blocks recently/frequently used.

• For character devices, optional line-discipline layer provides some of what we

described for text-terminal keyboard driver.

• Streams provide additional layer of abstraction for callers — can interface to

files, terminals, etc. (This is what you access with *scanf, *printf.)

Slide 8

I/O in Windows

• Hardware Abstraction Layer (HAL) attempts to insulate rest of O/S from some

low-level details — e.g., I/O using ports versus memory-mapped I/O.

• Standard interface to device drivers — Windows Driver Model. Drivers are

passed I/O Request Packet objects.



CSCI 3323 November 15, 2017

Slide 9

“Everything’s a File” Revisited

• I mentioned the pseudofilesystem /proc? which supposedly you can

read/write just as if it were a file?

• I wrote some throwaway code to access “files” within it and learned(?) that

while C stream I/O (fopen, fgetc, etc.) didn’t work well, the lower-level

routines (open, read, etc.) did.

Slide 10

Linux Memory Management, Revisited

• I mentioned in a previous class that Linux systems (often?) “overcommit”

memory — allow you to allocate more than you can actually use?

• I wrote a couple of programs illustrating this in action . . .



CSCI 3323 November 15, 2017

Slide 11

Minute Essay

• That wraps up what I have to say about I/O. Questions or requests for more?

• We have three full class periods left, plus the last day (which I’m planning to

use for exam review and evaluations). I had thought maybe a lecture each on

the boot process and security. Other suggestions/requests?

• Anyone not planning to be here Monday?


