
CSCI 3323 November 20, 2017

Slide 1

Administrivia

• Reminder: Homework 7 due Monday.

• Homework 3 programming problem graded at last! Sample solution on the

Web.

Slide 2

The Boot Process

• What happens between the time you turn the computer on (or initiate reboot)

and the point at which you get a login prompt is . . . complicated, mysterious,

and involves both hardware and software.

• Today’s topic is to demystify it as much as possible. Textbook has some

useful short information, indexed under “boot” and “BIOS”. i’m basing this

lecture on that, a book Linux Kernel Internals and various online sources.



CSCI 3323 November 20, 2017

Slide 3

Booting — Hardware

• When a PC is powered on, hardware starts the BIOS (Basic Input Output

System), a program that lives in/on some form of nonvolatile memory. It

contains functions to read from the keyboard, write to the screen, and do disk

I/O.

• This BIOS first does a “Power-On Self Test” (POST) — check how much

memory is installed, whether basic devices are installed and responding.

• It determines which device to try to boot from based on information also

stored in non-volatile memory. It then reads the first sector from this device —

“boot sector” or “master boot record”.

Slide 4

Boot Sector / Master Boot Record

• First sector on device from which we’re booting must contain (in a format

known to the hardware / BIOS) a little bit of code, enough to get the boot

process going.

• For partitioned devices, this first sector (MBR) contains a partition table,

indicating which partition contains the logical device from which booting is

supposed to be done, and where to find that logical device’s boot sector.

• Either way, we get a little bit of code, which when executed (presumably with

the help of the BIOS) reads in — something else — from disk to memory, and

transfers control to it. The “something else” could be the actual operating

system, or a “boot loader” (such as LILO or GRUB, for Linux systems).

• (From here on, the discussion will be somewhat Linux-specific, and alas will

be based on Linux as it existed a few years ago.)



CSCI 3323 November 20, 2017

Slide 5

Boot Loader

• LILO (or GRUB) looks at configuration files, possibly gets input from the

keyboard, and decides what to boot. (This used to be somewhat transparent,

with configuration in /boot/grub/grub.conf, but has become less

so.)

• If it’s Linux, part of the configuration is the name of the file containing the

(compressed) kernel. This gets uncompressed and read into memory, and

control is transferred to it.

• (What happens if it’s Windows being booted? good question, but my guess is

that LILO/GRUB reads in whatever boot sector would have been used to boot

Windows in a single-boot system, and transfers control to its little bit of code).

Slide 6

Starting the Kernel

• First thing executed is assembly code that does hardware initialization,

including:

• Put the processor in protected mode.

• Do initialization for the MMU (set up page table for kernel).

• Do initialization for interrupt processing (interrupt table/vector).



CSCI 3323 November 20, 2017

Slide 7

Starting the Kernel, Continued

• Next, control is transferred to C function start kernel, which begins

initializing data structures for the kernel.

• What’s executing at this point is “process 0”, which will become the “idle

process”, after doing a little more initialization.

Slide 8

Initialization — Process 0

• Daemons to manage the buffer cache (bdflush) and swapping (kswap)

are started.

• Filesystems are initialized and the root filesystem mounted.

• An attempt is made to connect with the console and open file descriptors for

stdin, stdout, stderr.

• An attempt is made to execute one of /etc/init, /bin/init,

/sbin/init.



CSCI 3323 November 20, 2017

Slide 9

Initialization — init Program

• (This is based on how things were some years ago. On most distributions,

replaced by something called systemd, about which people have

opinions!).

• Background: UNIX/Linux has a notion of “run levels” — typically 1 is

single-user, 3 is text-only, 5 is graphical, etc.

• init does more initialization (including closing/reopening stdin, etc.), reads

/etc/inittab, and “does what it says”, depending on run level. Default

level (for boot) is specified in /etc/inittab. Rest of the file says what to

do, depending on run level. Some of “what to do” involves running scripts in

/etc/rc.d.

• Typically some of what’s started is one or more processes that accept logins

— “virtual consoles” and/or graphical login manager.

• init then waits for any requests to change the runlevel (e.g., using

Slide 10

command init). Changing the runlevel — look again at

/etc/inittab.



CSCI 3323 November 20, 2017

Slide 11

Minute Essay

• None really — sign in.

• (And best wishes for a good holiday!)


