
CSCI 3323 (Principles of Operating Systems), Fall 2018

Homework 1

Credit: 50 points.

1 Reading

Be sure you have read, or at least skimmed, Chapter 1.

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in one of my mailboxes (outside
my office or in the ASO).

1. (10 points) For each of the following instructions, say whether it should be executed only
in kernel (i.e., supervisor) mode and briefly explain why.

(Hint : In general, user programs should not be allowed to execute instructions that might
interfere with the operating system’s control of the machine. The most reasonable way to
keep them from doing so is to allow such instructions only in supervisor mode. Note that
this question refers to machine-level instructions, not necessarily functionality. An operating
system could make the functionality of some of these instructions available to user programs
by wrapping them in system calls, and possibly requiring user programs to supply a password
to (successfully) execute these calls.)

(a) Disable all interrupts.

(b) Read the time-of-day clock.

(c) Change whatever registers are used to determine which part of memory the current
process has access to.

(d) Set the time-of-day clock.

(e) Switch from user mode to supervisor mode.

2. (5 points) We’ve talked some in class about the benefits of having an operating system
(providing a virtual machine, managing system resources). Can you think of circumstances
in which it would be advantageous not to have one? If so, what?

3. (10 points) Most UNIX systems include some command that allows you to trace all system
calls made by a process or command. Under Linux, this command is strace. For example,
to trace all the system calls made during execution of the command ls -l and record the
output in OUT, you would type

strace -o OUT ls -l

1



CSCI 3323 Homework 1 Fall 2018

Your mission for this problem is to run strace for a command of your choice, capture the
output, and then describe what some of it means. Specifically, I want you to pick at least
four lines of the output using different system calls and briefly explain each of these lines,
describing in general terms what the system call is supposed to do and what the parameters
and return value mean. (So, you will turn in a printout of (part of) the output of strace
with your homework. You might want to mark it up with numbers and then refer to these
numbers in your explanation.)

The man page for strace explains the general format of the output. To find out what the
individual system calls do, you will need to read their man pages. Some of these are easy to
find — e.g., the first call is usually to execve, and man execve will tell you about it. Some
are a little harder to track down — e.g., man write produces information about a write

command rather than a system call — but man with a section number of 21 (e.g., man 2

write) should show you the man page for the write system call.

As an example of what I have in mind, here is a line from a trace of the command ls /users/cs4320

with commentary. (You should choose system calls other than execve.)

execve("/bin/ls", ["ls", "-l", "/users/cs4320"], [/* 78 vars */]) = 0

The call to execve creates a new process to run the command. Parameters are the command
to execute, the arguments to pass to it, and an array of environment variables (78 of them,
apparently!). The return value of 0 probably doesn’t mean anything, since the man page for
execve says that the function doesn’t return if the call is successful.

3 Programming Problems

Do the following programming problems. You will end up with at least one code file per problem.
Submit your program source (and any other needed files) by sending mail to bmassing@cs.trinity.edu
with each file as an attachment. Please use a subject line that mentions the course and the assign-
ment (e.g., “csci 3323 hw 1” or “O/S hw 1”). You can develop your programs on any system that
provides the needed functionality, but I will test them on one of the department’s Linux machines,
so you should probably make sure they work in that environment before turning them in.

(For this assignment, “system that provides the needed functionality” means something UNIX-
like.)

1. (25 points) Figure 1-19 in chapter 1 of the textbook presents pseudocode for a simple
command shell. Your mission for this problem is to turn this into a C or C++ program that
runs on a Linux system. Your program should repeatedly prompt the user for a command and
command-line arguments and then run the given command with the given arguments. (Do
not start writing code until you read the whole assignment. I’m providing starter code that
takes care of the parts that are tedious to program in C.) You can require that the user give
the full path for the command (this is easier to implement and reasonable in context), and
you don’t have to do sophisticated parsing of the command-line arguments (such as wildcard
expansion, recognition of environment variables, etc., etc.). The program, however, should do
something sensible (such as displaying an error message) if it cannot run the command, and it
should stop on reaching EOF on standard input so that it can accept commands from either
a file or the keyboard (where pressing control-D signals EOF). Here is a sample execution:

1
man pages are organized into “sections” — one for commands, one for system calls, one for library functions, etc.

2

bmassing@cs.trinity.edu


CSCI 3323 Homework 1 Fall 2018

$ ./shellsketch

next command?

/bin/ls

Makefile shellsketch-starter.c test-input.txt

shellsketch shellsketch.c typescript

next command?

/bin/echo ab cd ef gh

ab cd ef gh

next command?

junk

cannot execute command: No such file or directory

next command?

/bin/ls junk

/bin/ls: cannot access junk: No such file or directory

next command?

Turning the pseudocode into code mostly involves defining appropriate data structures for
the variables in the pseudocode and replacing the type prompt and read command functions
with appropriate real code. You may recall that anything dealing with text strings is apt to
be tedious and messy in C, but my starter code takes care of most of that for you, including
some debug prints to track what it is doing:

http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2018fall/Homeworks/HW01/Problems/simple-shell.c

If you compile with the default version of gcc, you may need the -std=c99 flag.

Your first step should probably be to read the man page for execve — carefully — to see
what arguments it expects, and then figure out what you need to do to turn what the starter
code produces (an array of pointers to strings) into suitable input to execve. (You should
not need to do much.) Recall (or note) that man pages for functions tell you what if any
#include directives you need to include in your code.

For extra credit (up to 5 points), you can add more functionality (searching a path for the
command, doing more sophisticated parsing of inputs, exiting when the user types “exit”,
etc.). If you do, add something to the comments in the code describing your added function-
ality. If you insist, you can even rewrite any or all of the starter code in C++. Whatever
changes you make, however, be sure your program will still work with input that is valid for
the starter code. (E.g., you could implement some sort of search path, but if you, be sure the
program still accepts a full path for the command.)

C tip: Get in the habit of compiling with the -Wall flag and paying attention to warning
messages. Sometimes warning messages really are just warnings you can ignore, but often
they are signs of problems you should fix. Code that produces warnings with compiled with
-std=c99 -Wall -pedantic -O will lose points.

3

http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2018fall/Homeworks/HW01
simple-shell.c


CSCI 3323 Homework 1 Fall 2018

4 Honor Code Statement

Include the Honor Code pledge or just the word “pledged”, plus at least one of the following about
collaboration and help (as many as apply).2 Text in italics is explanatory or something for you to
fill in. For programming assignments, this should go in the body of the e-mail or in a plain-text
file honor-code.txt (no word-processor files please).

• This assignment is entirely my own work. (Here, “entirely my own work” means that it’s
your own work except for anything you got from the assignment itself — some programming
assignments include “starter code”, for example — or from the course Web site. In particular,
for programming assignments you can copy freely from anything on the “sample programs
page”.)

• I worked with names of other students on this assignment.

• I got help with this assignment from source of help — ACM tutoring, another student in the
course, the instructor, etc. (Here, “help” means significant help, beyond a little assistance
with tools or compiler errors.)

• I got help from outside source — a book other than the textbook (give title and author), a
Web site (give its URL), etc.. (Here too, you only need to mention significant help — you
don’t need to tell me that you looked up an error message on the Web, but if you found an
algorithm or a code sketch, tell me about that.)

• I provided help to names of students on this assignment. (And here too, you only need to tell
me about significant help.)

5 Essay

Include a brief essay (a sentence or two is fine, though you can write as much as you like) telling
me what about the assignment you found interesting, difficult, or otherwise noteworthy. For pro-
gramming assignments, it should go in the body of the e-mail or in a plain-text file essay.txt (no
word-processor files please).

2 Credit where credit is due: I based the wording of this list on a posting to a SIGCSE mailing list. SIGCSE is

the ACM’s Special Interest Group on CS Education.

4


