
CSCI 3323 (Principles of Operating Systems), Fall 2018

Homework 5

Credit: 70 points.

1 Reading

Be sure you have read, or at least skimmed, Chapter 3.

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in one of my mailboxes (outside
my office or in the ASO).

1. (10 points) The operating system designers at Acme Computer Company have been asked
to think of a way of reducing the amount of disk space needed for paging. One person
proposes never saving pages that only contain program code, but simply paging them in
directly from the file containing the executable. Will this work always, never, or sometimes?
If “sometimes”, when will it work and when will it not? (Hint: Search your recollections of
CSCI 2321 — or another source — for a definition of “self-modifying code”.)

2. (10 points) How long it takes to access all elements of a large data structure can depend
on whether they’re accessed in contiguous order (i.e., one after another in the order in which
they’re stored in memory), or in some other order. The classic example is a 2D array, in
which performance of nested loops such as

for (int r = 0; r < ROWS; ++r)

for (int c = 0; c < COLS; ++c)

array[r][c] = foo(r,c);

can change drastically for a large array if the order of the loops is reversed. Give two explana-
tions for this phenomenon. (Hint: The likeliest explanation these days involves the memory
hierarchy as discussed many weeks ago (registers, caches, RAM, etc. — 8/29 lecture). An-
other explanation, more likely when computers had less memory but still possible, involves
something from the current chapter on memory management.)

3. (10 points) Consider (imagine?) a very small computer system with only four page frames.
Suppose you have implemented the aging algorithm for page replacement, using 4-bit counters
and updating the counters after every clock tick, and suppose the R bits for the four pages
are as follows after the first four clock ticks.

Time R bit (page 0) R bit (page 1) R bit (page 2) R bit (page 3)

after tick 1 0 1 1 1

after tick 2 1 0 1 1

after tick 3 1 0 1 0

after tick 4 1 1 0 1

1



CSCI 3323 Homework 5 Fall 2018

What are the values of the counters (in binary) for all pages after these four clock ticks? If a
page needed to be removed at that point, which page would be chosen for removal?

4. (10 points) A computer at Acme Company used as a compute server (i.e., to run non-
interactive jobs) is observed to be running slowly (turnaround times longer than expected).
The system uses demand paging, and there is a separate disk used exclusively for paging. The
sysadmins are puzzled by the poor performance, so they decide to monitor the system. It is
discovered that the CPU is in use about 20% of the time, the paging disk is in use about 98%
of the time, and other disks are in use about 5% of the time. They are particularly puzzled
by the CPU utilization (percentage of time the CPU is in use), since they believe most of
the jobs are compute-bound (i.e., much more computation than I/O). First give your best
explanation of why CPU utilization is so low, and then for each of the following, say whether
it would be likely to increase it and why.

(a) Installing a faster CPU.

(b) Installing a larger paging disk.

(c) Increasing the number of processes (“degree of multiprogramming”).

(d) Decreasing the number of processes (“degree of multiprogramming”).

(e) Installing more main memory.

(f) Installing a faster paging disk.

3 Programming Problems

Do the following programming problems. You will end up with at least one code file per problem.
Submit your program source (and any other needed files) by sending mail to bmassing@cs.trinity.edu
with each file as an attachment. Please use a subject line that mentions the course and the assign-
ment (e.g., “csci 3323 hw 5” or “O/S hw 5”). You can develop your programs on any system that
provides the needed functionality, but I will test them on one of the department’s Linux machines,
so you should probably make sure they work in that environment before turning them in.

1. (15 points) Write a program or programs to demonstrate the phenomenon described in
problem 2. Turn in your program(s) and output showing differences in execution time. (It’s
probably simplest to just put this output in a text file and send that together with your source
code file(s).) Try to do this in a way that shows a non-trivial difference in execution time (so
you will likely need to make the arrays or other data structures large). I strongly recommend
that you write your programs in C or C++, or some other language where timing results
are more predictable than they’re apt to be in, for example, a JVM-based language such
as Java or Scala (because “just-in-time” compilation makes attempts to collect meaningful
performance data difficult). But anything that can be compiled and executed on one of the
Linux lab machines is acceptable, as long as you tell me how to compile and execute what
you turn in, if it’s not C or C++. You don’t have to develop and run your programs on one
of the lab machines, but if you don’t, (1) tell me what system you used instead, and (2) be
sure your programs at least compile and run on one of the lab machines, even if they don’t
necessarily give the same timing results as on the system you used.

Possibly-helpful hints:

• An easy way to measure how long program mypgm takes on a Linux system is to run it by
typing time mypgm. Another way is to run it with /usr/bin/time mypgm. (This gives

2

bmassing@cs.trinity.edu


CSCI 3323 Homework 5 Fall 2018

more/different information — try it.) If you’d rather put something in the program itself
to collect and print timing information, for C/C++ programs you could use the function
in http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2018fall/Homeworks/HW05/Problems/timer.h
to obtain starting and ending times for the section of the code you want to time.

• Your program doesn’t have to use a 2D array (you might be able to think of some other
data structure that produces the same result). If you do use a 2D array, though, keep
in mind the following:

– To the best of my knowledge, most C and C++ implementations allocate local vari-
ables on “the stack”, which may be limited in size. Dynamically allocated variables
(i.e., those allocated with malloc or new) aren’t subject to this limit.

– Dynamic allocation of 2D arrays in C is full of pitfalls. It may be easier to just
allocate a 1D array and fake accessing it as a 2D array (e.g., the element in x[i][j],
if x is a 2D array, is at offset i*ncols+j).

2. (15 points) The starting point for this problem is a C++ program that simulates execution
of a page replacement algorithm. Currently the program simulates only the FIFO algorithm.
Your mission is to make it simulate one or more of the other algorithms mentioned in the
text (and listed in the main program). You will get full credit for simulating one algorithm,
extra points for simulating additional algorithms. The starter code — well, there’s a lot of
it, but my hope is that I’ve structured it and commented it in such a way that you will not
find your job too daunting.

The program gets input from a combination of command-line arguments and an input file,
described below, and produces some statistics including how many page faults each algorithm
generates. To compile the program, use any C++ compiler (I’ve only tested with g++ on our
machines, but I don’t think I’ve done anything that wouldn’t work with other compilers); you
may need the -std=c++11 flag. Command-line arguments:

• Required:

– name of input file (format below)

– number of page frames

• Optional:

– “–interval N” to specify interval for “clock ticks“, for algorithms that need this
(almost but not quite all of them)

– “–tau N” to specify time interval for working set algorithms

– “–debug” to have program print extra information about what it’s doing, potentially
useful when debugging, or just to see details of its operation

Input file format:

• number of pages

• one or more lines of the form “t R n” or “t W n”, where t is the access time (in increasing
order but not necessarily without gaps), R/W indicates whether this is a read or write
reference, and n is the page number being referenced

Output should be the following information, for each page replacement algorithm imple-
mented:

3

http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2018fall/Homeworks/HW05
timer.h


CSCI 3323 Homework 5 Fall 2018

• name of algorithm

• total number of page references

• number of page references that changed the page

• number of page faults

• number of times a page had to be written out

Make the following assumptions:

• Initially memory is empty.

• All memory references are valid — if the page is not in memory, it can be read in from
disk. (You don’t have to simulate the actual reading-in.)

Sample input and output:

• Command-line parameters: pagingsimulator-in.txt 4 --interval 5 --tau 10.

• http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2018fall/Homeworks/HW05/Problems/pagingsim

• http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2018fall/Homeworks/HW05/Problems/pagingsim
(This is output for my sample solution, which implements all the algorithms. As pro-
vided, the program only simulates FIFO and so only produces output for that algorithm.)

• http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2018fall/Homeworks/HW05/Problems/page-replacemen
containing a more extensive set of tests. There’s a script do-tests that runs the
program repeatedly using two different input files and different values for the other
command-line arguments, putting output in files simulator-out*txt. My output is in
files blm-simulator-out*txt. Run the script with sh do-tests. (If you didn’t call
your executable main you’ll need to change the script slightly.) c

Algorithm-specific notes:

• Some of the algorithms (e.g., NRU) say they choose a page “at random” from some
group of pages. Just pick the first one in the group.

• For LRU I want you to do the version that involves additions to hardware (instruction
counts in the PTE). Rather than trying to simulate actual instruction counts, just use
time of last reference.

• For Aging, use 16-bit counters.

• WSClock is described in terms of “scheduling I/O” to write out pages. Doing this in
a realistic way is beyond the scope of this problem, so I want you to just fake it by
(simulating) writing out the page immediately (but note that the algorithm skips these
pages on its first trip around the circle of pages, only considering them if it doesn’t find
a page that didn’t need to be written out).

If there are other details you find unclear from the textbook’s description, please feel free to
ask! When I started writing my sample solution I found that there were some details that
were not spelled out in the textbook as clearly as one might like.

To get started, get a copy of http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2018fall/Homeworks/HW05
containing the starter code, unzip it (command unzip on our machines), and try compiling
the main program (main.cpp) and running it (you might try it with --debug too). Then
start looking at code, which is structured as follows.

4

http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2018fall/Homeworks/HW05
http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2018fall/Homeworks/HW05
http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2018fall/Homeworks/HW05
http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2018fall/Homeworks/HW05


CSCI 3323 Homework 5 Fall 2018

• Files you should not need to change:

– Main program main.cpp This program makes an object for each algorithm (classes
below) and calls its simulate() method. These methods produce Results objects
with field isValid that should be true for the algorithms actually implemented;
the main program prints all such objects where this value is true.

– Class for page references (inputs) page-reference.hpp (you may not need to look
at this).

– Base class for page replacement algorithsm pra-Base.hpp (you may not need to
look at this).

– Class for page table entries pte.hpp.

– Class for results of simulation results.hpp.

– Class representing the FIFO algorithm pra-FIFO.cpp.

• There are also “stub” versions for classes representing the other algorithms:

– pra-Aging.cpp

– pra-Clock.cpp

– pra-LRU.cpp

– pra-NFU.cpp

– pra-NRU.cpp

– pra-Optimal.cpp

– pra-SecondChance.cpp

– pra-WSClock.cpp

– pra-WorkingSet.cpp

You should pick one or more of these and complete them to implement the desired algo-
rithms. Comments including the word FIXME show where you need to make changes/additions.
(You probably don’t need to make other changes.) The code for FIFO is meant to serve
as a model, and comments with the word HINT are meant as hints about what parts you
can probably copy as is and what parts you may need to adapt.

4 Honor Code Statement

Include the Honor Code pledge or just the word “pledged”, plus at least one of the following about
collaboration and help (as many as apply).1 Text in italics is explanatory or something for you to
fill in. For programming assignments, this should go in the body of the e-mail or in a plain-text
file honor-code.txt (no word-processor files please).

• This assignment is entirely my own work. (Here, “entirely my own work” means that it’s
your own work except for anything you got from the assignment itself — some programming
assignments include “starter code”, for example — or from the course Web site. In particular,
for programming assignments you can copy freely from anything on the “sample programs
page”.)

• I worked with names of other students on this assignment.

1 Credit where credit is due: I based the wording of this list on a posting to a SIGCSE mailing list. SIGCSE is

the ACM’s Special Interest Group on CS Education.

5



CSCI 3323 Homework 5 Fall 2018

• I got help with this assignment from source of help — ACM tutoring, another student in the
course, the instructor, etc. (Here, “help” means significant help, beyond a little assistance
with tools or compiler errors.)

• I got help from outside source — a book other than the textbook (give title and author), a
Web site (give its URL), etc.. (Here too, you only need to mention significant help — you
don’t need to tell me that you looked up an error message on the Web, but if you found an
algorithm or a code sketch, tell me about that.)

• I provided help to names of students on this assignment. (And here too, you only need to tell
me about significant help.)

5 Essay

Include a brief essay (a sentence or two is fine, though you can write as much as you like) telling
me what about the assignment you found interesting, difficult, or otherwise noteworthy. For pro-
gramming assignments, it should go in the body of the e-mail or in a plain-text file essay.txt (no
word-processor files please).

6


