
CSCI 3323 (Principles of Operating Systems), Fall 2018

Homework 6

Credit: 30 points.

1 Reading

Be sure you have read, or at least skimmed, Chapter 4.

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in one of my mailboxes (outside
my office or in the ASO).

1. (5 points) Consider a digital camera that records photographs in some non-volatile storage
medium (e.g., flash memory). Photographs are recorded in sequence until the medium is full;
at that point, the photographs are transferred to a hard disk and the camera’s storage is
cleared. If you were implementing a file system for the camera’s storage, what strategy would
you use for file allocation (contiguous, linked-list, etc.) and why? Note that this camera
does not have the ability to delete photographs from its storage one at a time, so your file
system does not need to support that. (It’s probably best to think of this as a somewhat
hypothetical problem, using only the description supplied, rather than trying to extrapolate
from any experience you have with actual cameras.)

2. (5 points) Linux includes code to access several types of Windows filesystems, including
FAT-32. So on a system where one of the disk partitions holds a FAT-32 filesystem, one
can configure Linux to access this filesystem, through pathname /windows/fat for example.
However, all the files in /windows/fat appear to be owned by user root, and attempts to
change their ownership (with the chown command) fail with an error message “Operation
not permitted”. This happens even when the user trying the command is root (a.k.a. the
superuser). What’s wrong?

3. (5 points) Section 4.5.1 describes several MS-DOS FAT filesystems. These systems require
keeping a FAT in memory, which given that FATs have an entry for each disk block seems
like it might require a lot of memory. But FAT-12, FAT-16, and FAT-32 impose limits on the
number of disk blocks (based on the number of bits used to represent the block — e.g., 12
for FAT-12), which might mean the amount of memory needed is less. How much memory is
required for a FAT for each of these filesystems? You can express your answers in terms of
powers of two, or in terms of kilobytes (210 bytes), megabytes (220 bytes), or gigabytes (230

bytes). To be consistent with what’s in the textbook, also assume that each entry in the FAT
is a whole number of bytes (e.g., 12 bits is rounded up to 2 bytes), though some online sources
indicate that this is not the case, at least for FAT-12. Also note that FAT-32 is somewhat
badly named in that it uses 28 bits for block number and not 32.

1



CSCI 3323 Homework 6 Fall 2018

4. (10 points) Section 4.5.2 describes a UNIX filesystem in which each i-node contains 10 direct
entries, one single indirect entry, one double indirect entry, and one triple indirect entry. If
a block is 1KB (1024 bytes) and a disk address is 4 bytes, what is the maximum file size, in
KB? (Hint: Use the blocksize and size of disk addresses to determine how many entries each
indirect block contain.)

5. (5 points) Supposedly one of the advantages of a filesystem using i-nodes over one using
a FAT is that for the former we only have to keep in memory the i-nodes for any open
files. However, if an i-node can reference indirect blocks, as described in problem 4, it seems
plausible that we might also need to keep in memory all the indirect blocks. If that’s the case,
and if blocksize and size of disk addresses are as in problem 4 and the “attributes” part of an
i-node requires 144 bytes (a guess based on the size of the struct built by library function
fstat), what’s the minimum and maximum amount of memory we would need for an i-node
and any associated indirect blocks? (Note: All i-nodes are the same size.)

3 Programming Problems

Do as many of the following programming problems as you like. You will end up with at least
one code file per problem. Submit your program source (and any other needed files) by sending
mail to bmassing@cs.trinity.edu with each file as an attachment. Please use a subject line that
mentions the course and the assignment (e.g., “csci 3323 hw 6” or “O/S hw 6”). You can develop
your programs on any system that provides the needed functionality, but I will test them on one of
the department’s Linux machines, so you should probably make sure they work in that environment
before turning them in.

1. (Optional; up to 5 extra-credit points each.) Each of these problems asks you to do something
with all files in a directory and its subdirectories. To get maximum points, your program(s)
should be in C or C++ and make no use of system commands such as ls. (You can use
another language, or even write a shell script, but you will get fewer points.) Library functions
opendir, readdir, and lstat will probably be helpful. You might also be interested in
functions chdir and strerror. These functions are described by man pages. (Remember
also that man -a foo gives all man pages for foo. This can be helpful if there is both a
command foo and a functionfoo.)

Hint: I found it helpful to structure the programs using recursion.

(a) Write a program that given a directory D, blocksize B, and maximum number of blocks
M as command-line arguments prints out how many files in D and its subdirectories are
of size B or less, how many are of size between B and 2B, etc., up to size MB. (This
might be useful in getting an idea of what size files are typical, so if you had a choice of
blocksize you would know what choice might make the most sense.) Include directories
and symbolic links (but count the size of the link and not the file/directory it links to).
Also turn in output of running this program on your home directory in /users with B

and M as below.

Here is sample output for running the program with D = /lib64, B = 1024, and
M = 20, on Dias01:

Unable to open /usr/lib64/Pegasus: Permission denied

Results for directory /usr/lib64 with blocksize 1024:

2

bmassing@cs.trinity.edu


CSCI 3323 Homework 6 Fall 2018

6821 files of size 1 blocks

2999 files of size 2 blocks

2067 files of size 3 blocks

1344 files of size 4 blocks

1061 files of size 5 blocks

1059 files of size 6 blocks

949 files of size 7 blocks

807 files of size 8 blocks

611 files of size 9 blocks

500 files of size 10 blocks

682 files of size 11 blocks

753 files of size 12 blocks

595 files of size 13 blocks

354 files of size 14 blocks

362 files of size 15 blocks

695 files of size 16 blocks

286 files of size 17 blocks

260 files of size 18 blocks

233 files of size 19 blocks

556 files of size 20 blocks

7690 files of size 21 blocks or more

(Of course, you won’t be able to examine files in directories you don’t have access to.
Just print error messages for files/directories you can’t access.)

(b) Write a program that given a directory D as a command-line argument prints all the
“broken” symbolic links in D or any of its subdirectories (i.e., symbolic links that point
to files that don’t exist). Here is sample output for running the program with D =
/users/bmassing/Local/HTML-Documents/Classes/CS3323_2018fall/Homeworks/HW06/Problems/Tes

Broken symbolic links in /users/bmassing/Local/HTML-Documents/Classes/CS3323_2018fall/Homeworks/HW06/Problems/TestData:

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2018fall/Homeworks/HW06/Problems/TestData/foobar

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2018fall/Homeworks/HW06/Problems/TestData/barfoo

(Again, you won’t be able to examine files in directories you don’t have access to, so just
print error messages. You should be able to access everything in the above directory,
however. If you want to create some test data of your own, remember that to make a
symbolic link called sym pointing to foo, you type ln -s foo sym.)

(c) Write a program that given a directory D as a command-line argument finds all the files
in D or any of its subdirectories to which there are two or more hard links and prints, for
each of them, all the paths withinD that point to that file. Here is sample output for run-
ning the program withD = /users/bmassing/Local/HTML-Documents/CS4320/Homeworks/HW06/Problems

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2018fall/Homeworks/HW06/Problems/Tes

Files with multiple hard links in /users/bmassing/Local/HTML-Documents/Classes/CS3323_2018fall/Homeworks/HW06/Problems/TestData:

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2018fall/Homeworks/HW06/Problems/TestData/bbb

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2018fall/Homeworks/HW06/Problems/TestData/b

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2018fall/Homeworks/HW06/Problems/TestData/bbbb

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2018fall/Homeworks/HW06/Problems/TestData/bb

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2018fall/Homeworks/HW06/Problems/TestData/dd

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2018fall/Homeworks/HW06/Problems/TestData/d

This output means that the two pathnames in the first group reference the same file,
the four pathnames in the second group reference the same file, etc. Output can be in
any order as long as paths that reference the same file are grouped together. (Again,
you won’t be able to examine files in directories you don’t have access to, so just print

3

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2018fall/Homeworks/HW06/Problems/TestData
/users/bmassing/Local/HTML-Documents/CS4320/Homeworks/HW06/Problems
/users/bmassing/Local/HTML-Documents/Classes/CS3323_2018fall/Homeworks/HW06/Problems/TestData


CSCI 3323 Homework 6 Fall 2018

error messages. You should be able to access everything in the above directory, however.
If you want to create some test data of your own, remember that to make a hard link
called foo2 pointing to foo, you type ln foo foo2.)

4 Honor Code Statement

Include the Honor Code pledge or just the word “pledged”, plus at least one of the following about
collaboration and help (as many as apply).1 Text in italics is explanatory or something for you to
fill in. For programming assignments, this should go in the body of the e-mail or in a plain-text
file honor-code.txt (no word-processor files please).

• This assignment is entirely my own work. (Here, “entirely my own work” means that it’s
your own work except for anything you got from the assignment itself — some programming
assignments include “starter code”, for example — or from the course Web site. In particular,
for programming assignments you can copy freely from anything on the “sample programs
page”.)

• I worked with names of other students on this assignment.

• I got help with this assignment from source of help — ACM tutoring, another student in the
course, the instructor, etc. (Here, “help” means significant help, beyond a little assistance
with tools or compiler errors.)

• I got help from outside source — a book other than the textbook (give title and author), a
Web site (give its URL), etc.. (Here too, you only need to mention significant help — you
don’t need to tell me that you looked up an error message on the Web, but if you found an
algorithm or a code sketch, tell me about that.)

• I provided help to names of students on this assignment. (And here too, you only need to tell
me about significant help.)

5 Essay

Include a brief essay (a sentence or two is fine, though you can write as much as you like) telling
me what about the assignment you found interesting, difficult, or otherwise noteworthy. For pro-
gramming assignments, it should go in the body of the e-mail or in a plain-text file essay.txt (no
word-processor files please).

1 Credit where credit is due: I based the wording of this list on a posting to a SIGCSE mailing list. SIGCSE is

the ACM’s Special Interest Group on CS Education.

4


