
CSCI 3323 September 5, 2018

Slide 1

Administrivia

• Reminder: Homework 1 written problems due Monday at 5pm.

• I’ve put a copy of the textbook on 1-day reserve at the library if yours hasn’t

arrived yet.

• (Anyone notice that Chapter 1 has a whole section on C? Early editions

didn’t. Guess why it was added. You can feel smug!)

Slide 2

Minute Essay From Last Lecture

• If you’re curious — a number of people got the answer I had in mind, or came

close, but by no means all. Okay either way!

• Would you agree that irritating as “Segmentation fault” is, it’s not as bad as

this alternative?

CSCI 3323 September 5, 2018

Slide 3

System Calls (Review)

• Recall that some things can/should only be done by O/S (e.g., I/O), and

hardware can help enforce that.

• But application programs need to be able to request these services. How can

we make this work? System calls . . .

Slide 4

System Calls — Mechanism (Review)

• Library routine (running in user mode) sets up parameters and issues TRAP

instruction or similar. One parameter says which system call is being made

(to create a process, open a file, etc.).

• TRAP instruction switches to kernel mode and transfers control to a fixed

address.

• At that address is code for “handler” that uses parameters set up by library

routine to figure out which system call is being invoked and call appropriate

code.

• When processing of system call is finished, control returns to calling program

— if appropriate. (What are other possibilities? Consider situations involving

waiting, errors.) Return to calling program also switches back to user mode.

CSCI 3323 September 5, 2018

Slide 5

System Calls — Services Provided (Review)

• Typical services provided include creating processes, creating files and

directories, etc., etc. — details depend on (and in some ways define, from

application programmer’s perspective) operating system.

• Examples discussed in textbook:

– POSIX (Portable Operating System Interface (for UNIX)) — about 100

calls.

– Win32 API (Windows 32-bit Application Program Interface) — thousands

of calls.

Worth noting that the actual number of system calls is likely smaller —

interface may contain function calls that are implemented completely in user

space (no TRAP to kernel space).

Slide 6

Interrupts

• (Discuss here partly since processing of TRAP instructions is similar to

interrupts.)

• What are interrupts? a way to interrupt current processing when an

unexpected or don’t-know-when event happens — error occurs (e.g., invalid

operation), I/O operation completes. Seems useful, no?

• On interrupt, goal is to save enough of current state to allow us to restart

current activity later, and then deal (perhaps minimally) with interrupt.

CSCI 3323 September 5, 2018

Slide 7

Interrupt Processing

• Save old value of program counter.

• Disable interrupts.

• Transfer control to fixed location (“interrupt handler” or “interrupt vector”) —

normally O/S code that saves other registers, re-enables interrupts, decides

what to do next, etc.

• (See Figure 1-11.)

• (Also see Figure 1-17 — system call processing.)

Slide 8

Example: System Calls in MIPS

• MIPS instruction set includes syscall instruction that generate a

system-call exception. MIPS interrupts/exceptions use special-purpose

registers to hold type of exception and address of instruction causing

exception.

Before issuing syscall, program puts value indicating which service it

wants in register $v0. Parameters for system call are in other registers (can

be different ones for different calls).

• Interrupt handler for system calls looks at $v0 to figure out what service is

requested, other registers for other parameters.

• When done, it uses rfe instruction to restore calling program’s environment,

then returns to caller using value from EPC register.

CSCI 3323 September 5, 2018

Slide 9

Example: System Calls in MIPS/SPIM

• SPIM simulator — a primitive O/S! — defines a short list of system calls.

Example code fragment:

la $a0, hello

li $v0, 4 # "print string" syscall

syscall

....

.data

hello: .asciiz "hello, world!\n";

Slide 10

Command Shells

• History — early batch systems had to interpret “control cards”; modern

equivalent is to interpret “commands” (usually interactive).

• Not technically part of O/S, but important and related.

• Typical shell functionality:

– Invocation of programs (optionally in background).

– Input/output redirection.

– Program-to-program connections (pipes).

– “Wildcard” capability.

– Scripting capability.

• Examples — MS-DOS command.com, Cygwin under Windows; UNIX sh,

bash, csh, tcsh, ksh, zsh, . . .

CSCI 3323 September 5, 2018

Slide 11

Homework 1 Programming Problem

• The idea is to write a very simple shell based on the sort-of-pseudocode in

the textbook, using fork and execve system calls. (See Figure 1-19.)

Note that the shell starts a new process for each command. Why do you think

it does that? (Think about what happens if the command crashes.)

• To do this, you have to solve a couple of problems:

– Figure out how to use system-call library functions fork and execve.

Overview on next slide; details in man pages.

– Deal with string processing in C (or C++). (But I’m supplying starter code

that does most of this.)

Slide 12

Homework 1 Programming Problem, Continued

• fork() function creates and starts a new process. Both original (“parent”)

and new (“child”) processes execute the same program, continuing at

whatever follows call to fork(). Return value from function says which

process is which.

• execve() function discards current program and loads and starts a new

one. If it fails, execution continues with whatever follows; otherwise whatever

follows is ignored!

CSCI 3323 September 5, 2018

Slide 13

Compiler(s) on the Classroom/Lab Machines

• For the homework you will be writing C code (or C++ if you truly don’t want to

use the starter code). I will test with the appropriate GNU compiler on the lab

machines, so you should probably do so too.

• For what it’s worth, the current (and just-previous) “build” running on the

classroom/lab machines includes multiple versions of gcc. If you’re using

one of the non-default ones (perhaps because it’s required for some other

course, such as anything Dr. Lewis teaches using C++), it would be helpful to

tell me so when you turn something in. More information about all of this on

request.

Slide 14

Sidebar: C/C++ Programming Advice

• I strongly recommend always compiling with flags to get extra warnings.

There are lots of them, but you can get a lot of mileage just from -Wall.

Add -pedantic to flag nonstandard usage.

Warnings are often a sign that something is wrong. Only rarely should they be

ignored! Sometimes the problem is a missing #include. man pages tell

you if you need one.

• If you want to write “new” C (including C++-style comments), you may need to

add -std=c99.

CSCI 3323 September 5, 2018

Slide 15

Sidebar: C/C++ Programming Advice, Continued

• If typing all of these gets tedious, consider using a simple makefile: Create a

file called Makefile containing the following (the first line for C, the second

for C++):

CFLAGS = -Wall

CXXFLAGS = -Wall

and then compile hello.c to hello by typing make hello, or

similarly for hello.cpp.

Slide 16

Process Abstraction

• We want O/S to manage “things happening at the same time” — applications,

hidden tasks such as managing a device, etc.

• Key abstraction for this — “process” — program plus associated data,

including program counter.

• True concurrency (“at the same time”) requires more than one

CPU/processor/core. Can get apparent concurrency via interleaving — model

one virtual CPU per process and have the real processor switch back and

forth among them (“context switch”).

(Aside: In almost all respects, this turns out to be indistinguishable from true

concurrency. “Hm!”?)

CSCI 3323 September 5, 2018

Slide 17

Process Abstraction, Continued

• Can also associate with process an “address space” — range of addresses

the program can use. Simplifying a little, this is “virtual memory” (like the

virtual CPU) that only this process can use. More (lots more) about this later.

(Nitpick: Yes, we also want to be able to share memory among processes.

More about that later too.)

• How to map this to the real hardware? Chapter 2 talks about how to share the

real CPU(s) among processes; chapter 3 talks about how to share the real

memory.

Slide 18

Context Switches

• What is it? switch from one process to another.

• When should this happen?

CSCI 3323 September 5, 2018

Slide 19

Context Switches, Continued

• Should happen

– when a process’s “time slice” is up.

– when there’s an unrecoverable error.

– when there’s something that needs to be done right away (e.g., deal with

input/output).

– maybe other times? (when a process has to wait for something, e.g.).

All signalled by some kind of interrupt.

• Goal is to suspend work on a process such that we can later pick up exactly

where we left off. How do we make that happen?

(Think about what the hardware does when an interrupt happens, what’s

included in that “virtual CPU”.)

Slide 20

Context Switches, Continued

• On interrupt, hardware saves program counter (at least — why?), transfers

control to fixed location — which contains O/S code.

• That O/S code has to

– Save CPU state (program counter, registers, etc.) for the current process.

– Deal with interrupt (details depend on type — I/O versus timer versus . . .).

– Restore CPU state for “next” process (previously saved), thereby restarting

it.

(“Next” process? yes, O/S might have to choose — more about that later.)

CSCI 3323 September 5, 2018

Slide 21

Process Creation and Termination

• When are processes created?

– At system startup.

– When another process makes a “create process” system call — e.g., to

start a new application.

• When are processes destroyed?

– At program exit.

– After some kinds of errors.

– When another process makes a “kill process” system call.

Slide 22

Process States

• Can think of processes as being in one of three states:

– “Running” — being executed by a CPU.

– “Blocked” — waiting for something to happen (I/O to complete, another

process to do something, etc.) and unable to do anything useful until it

does.

– “Ready” — not blocked, but waiting because all CPUs are currently

executing other processes.

• Possible transitions? Which ones require decision-making?

CSCI 3323 September 5, 2018

Slide 23

Process States, Continued

• Possible transitions (Figure 2-2):

– Running to blocked — happens when, e.g., a process makes an I/O

request and can’t continue until it’s complete.

– Blocked to ready — happens when the event the blocked process is

waiting for occurs.

– Running to ready, ready to running — needed if we want some sort of

time-sharing (give all non-blocked processes “a turn” frequently).

• Notice that moving to and from “blocked” state doesn’t involve

decision-making, but ready/running transitions do.

• The decision-maker — “scheduler” (to be discussed later). Often “running to

ready” is triggered by an interrupt (I/O, timer, etc.), and “ready to running”

involves this scheduler.

Slide 24

Implementing Processes

• Think about how you would implement this abstraction . . .

• First, you’d want a data structure to represent each process, to include —

what?

CSCI 3323 September 5, 2018

Slide 25

Implementing Processes, Continued

• Data structure to represent each process would include some way to

represent such things as:

– Process ID.

– Process state (running / ready / blocked).

– Information needed for context switch — a place to save program counter,

registers, etc.

– Other stuff as needed — e.g., a list of data structures for open files.

• Then you’d collect these into a table (or some similar structure) — “process

control table”, with individual data structures being “entries in the process

control table” or “process control blocks”.

Slide 26

Implementing Processes, Example — Linux

• Each process (“task”) is represented by a C struct containing information

similar to what we described.

• These structs are chained as a doubly-linked list; there is also a hash

table keyed by PID.

• (This is according to online information about the 2.4 kernel.)

CSCI 3323 September 5, 2018

Slide 27

Minute Essay

• In a system with 8 CPUs and 100 processes, what are the maximum and

minimum number of processes that can be running? ready? blocked?

• How are you doing with regard to getting a copy of the textbook?

Slide 28

Minute Essay Answer

• Blocked: Maximum of 100 (unless you assume that there’s an “idle” operating

system process that runs when nothing else does and never blocks, and

maybe one of these is needed for every CPU). Minimum of 0.

• Running: Maximum of 8, because there are 8 CPUs. Minimum of 0 (again

unless you assume that there’s an O/S process that runs when nothing else

does).

• Ready: Maximum of 92, since all CPUs will be running processes if there are

any that can be run. (Depending on details, you might have to add “except

during context switches, when the scheduler is choosing the next process to

run on a CPU”.) Minimum of 0, since they could all be blocked or running.

