CSCI 3323 September 12, 2018

Administrivia

o Reminder: Homework 1 programming problem due today.

o Homework 2 not ready yet but probably will be before next class. I'll send

e-mail. You'll have at least a week to work on it.

Slide 1
Minute Essay From Last Lecture
® Responses about loop invariants varied — some people didn’t remember
hearing about them at all, others remembered only vaguely. | think they're a
useful way of thinking about loops. | have an overview in my slides from last
time.
Slide 2 e Most people had some exposure to multithreading. My impression is that it's

often mentioned in CS2, Data Abstraction, and Algorithms.

CSCI 3323 September 12, 2018

4)

Mutual Exclusion Problem — Review

e In many situations, we want only one process at a time to have access to
some shared resource.

e Generic/abstract version: Multiple processes, each with a “critical region”
(“critical section”):

while (true) {
Slide 3

do_cr(); // must be "finite"
do_non_cr () ; // need not be "finite"

}

e Goal is to add something to this code such that:
1. No more than one process at a time can be “in its critical region”.
2. No process not in its critical region can block another process.
3. No process waits forever to enter its critical region.
4

. No assumptions are made about how many CPUs, their speeds.

. J

Mutual Exclusion Problem — Recap

e So far we looked at a few proposed solutions that didn’t work, for various
reasons.

o Now we'll look at some that do (yay!).

Slide 4

CSCI 3323

Slide 5

Slide 6

September 12, 2018

Proposed Solution — Peterson’s Algorithm

o Shared variables:

int turn = 0; // "who tried most recently"

bool interested0d = false, interestedl = false;

Pseudocode for process p1:

while (true) {

Pseudocode for process p0:

while (true) {

interested0 = true; interestedl = true;
turn = 0; turn = 1;
while ((turn == 0) while ((turn == 1)

&& interestedl);

do_cr();

interested0 = false;

do_non_cr () ;

&& interested0);

do_cr();

interestedl = false;

do_non_cr () ;

} }

e Does it work? Yes ...

_

Peterson’s Algorithm, Continued

e |ntuitive idea: p0 can only start do_cr () if either p1 isn’'t interested, or p1 is
interested but it's p0’s turn; turn “breaks ties”.

e Semi-formal proof using invariants is a bit tricky. Proposed invariant has two

parts:

— “If pOis in its critical region, interested0 is true and either

interestedl isfalse or turn is 17; similarly for p1.

- “turnis eitherOor 1’

e |f we can show that, first requirement (no more than one process in critical
region) is true. Other requirements are too.

Second part is clearly okay, but for the first, a fiddly detail — the invariant can
be false if p0 is in its critical region when p1 executes the lines

interestedl = true; turn = 1;.Soreviseahit...

~N

J

CSCI 3323 September 12, 2018

Peterson’s Algorithm, Continued

o Shared variables:

int turn = 0; // "who tried most recently"
bool interested0 = false, interestedl = false;
Pseudocode for process p0: Pseudocode for process p1:
while (true) ({ while (true) ({
interested0 = true; // L1 interestedl = true; // L1
turn = 0; // L2 turn = 1; // L2
Slide 7 while ((turn == 0) while ((turn == 1)
&& interestedl); && interested0);
do_cr(); do_cr();
interested0 = false; interestedl = false;
do_non_cr(); do_non_cr();

} }

e Revised invariant (first part): “If p0 is in its critical region, interestedO is
true and one of the following is true: interestedl is false, turnis 1, or
p1is between L1 and L2”, and similarly for p1. Ugly but (I claim) works . ..

4)

Peterson’s Algorithm, Continued

e Revised invariant again: “If p0 is in its critical region, interested0 is true
and one of the following is true: interestedl is false, turnis 1, or p1
is between L1 and L2”, and similarly for p1. Invariant?

e True initially.

Slide 8 e Could change when either process enters its critical region. But this only

happens ...when? So okay.

e Doesn’t change when eiher process leaves its critical region (somewhat
trivially).

e Changes to interesten — this is where the revision comes in; if the
other process is in its critical region then it’s a bit fiddly, but okay with revision.

e Changes to turn are okay.

e So okay!

. J

CSCI 3323 September 12, 2018

Peterson’s Algorithm, Continued

e Requires essentially no hardware support (aside from “no two simultaneous
writes to memory location X” — fairly safe assumption as long as X is a single
“word”). Can be extended to more than two processes.

e But complicated and not very efficient because it “busy-waits”.

Slide 9

Sidebar: TSL Instruction

e A key problem in concurrent algorithms is the idea of “atomicity” (operations
guaranteed to execute without interference from another CPU/process).
Hardware can provide some help with this.

e E.g., “test and set lock” (TSL) instruction:

Slide 10 TSL registerX, lockVar

(1) copies LockVar to registerX and (2) sets LockVar to non-zero,
all as one atomic operation.

How to make this work is the hardware designers’ problem!

CSCI 3323 September 12, 2018

4)

Proposed Solution Using TSL Instruction

o Shared variables:

int lock = 0;

Pseudocode for each process: Assembly-language routines:
while (true) ({ enter_cr:
enter_cr(); TSL regX, lock
do_cr(); compare regX with 0
; leave_cr(); if not equal
Slide 11 do_non_cr () ; jump to enter_cr

} return
leave_cr:
store 0 in lock

return

o Does it work? Yes ...

4)

Solution Using TSL Instruction, Continued

e Proposed invariant: “1ock is 0 exactly when no processes in their critical
regions, and nonzero exactly when one process in its critical region.” (“Exactly
when” here means “if and only if”.)

e |f this invariant holds, that means first requirement is met. (Does it hold? Next
Slide 12 slide.) Others met too — well, except that it might be “unfair” (some process

waits forever).

e |s this a better solution? Simpler than Peterson’s algorithm, but still involves
busy-waiting. (Also depends on hardware features that might not be present,

but these days almost all hardware has something similar.)

CSCI 3323 September 12, 2018

~N

Solution Using TSL Instruction, Continued

e Proposed invariant: “1ock is 0 exactly when no processes in their critical
regions, and nonzero exactly when one process in its critical region.” (“Exactly
when” here means “if and only if”.)

e True initially.

Slide 13 e Could change when a process enters its critical region — but notice that only
happens when 1ock is 0.

e Also doesn’t change when a process leaves its critical region.

e So okay.

Mutual Exclusion Solutions So Far

e Solutions so far have some problems: inefficient, dependent on whether
scheduler/etc. guarantees fairness.
(It's worth noting too that for the simple ones needing no special hardware —
e.g., Peterson’s algorithm — whether they work on real hardware depends on

Slide 14 whether values “written” to memory are actually written right away or cached.
Surprisingly difficult to guarantee that!)

e Also, they're very low-level, so might be hard to use for more complicated
problems.

® So, people have proposed various “synchronization mechanisms” . ..

CSCI 3323 September 12, 2018

4)

Synchronization Mechanisms — Overview

e Synchronization using only shared variables seems to be tedious and
inefficient.

e “Synchronization mechanisms” are more-abstract ways of coordinating what
processes do. A key point is providing something that potentially makes a

Slide 15 process wait.

4)

Semaphores

e History — 1965 paper by Dijkstra (possibly earlier work by Iverson, or so says
a former faculty member who knows of Iverson through his work on APL/J).
e |dea — define semaphore ADT:
— “Value” — non-negative integer.
Slide 16 — Two operations, both atomic:
* up (V) — add one to value.
* down (P) — block until value is nonzero, then subtract one.

e Ignoring for now how to implement this — is it useful?

CSCI 3323

September 12, 2018

Slide 17

Mutual Exclusion Using Semaphores

Shared variables:
semaphore S (1);
Pseudocode for each process:
while (true) {
down (S) ;
do_cr();
up (S) ;
do_non_cr () ;

}

Proposed invariant: “S has value 1 exactly when no process in its critical
region, 0 exactly when one process in its critical region, and never has values

otherthan O or 1.”

J

Slide 18

Mutual Exclusion Using Semaphores, Continued

Proposed invariant again: “S has value 1 exactly when no process in its
critical region, 0 exactly when one process in its critical region, and never has
values other than O or 1.”

True initially.

Could change when a process enters its critical region — but this is
essentially exactly when a down (S) completes, so okay.

Could change when a process leaves its critical region — but this is
essentially exactly when an up (S) completes, so okay.

CSCI 3323 September 12, 2018

Bounded Buffer Problem

e (Example of slightly more complicated synchronization needs.)

e |dea — we have a buffer of fixed size (e.g., an array), with some processes
(“producers”) putting things in and others (“consumers”) taking things out.
Synchronization:

Slide 19 — Only one process at a time can access buffer.

— Producers wait if buffer is full.

— Consumers wait if buffer is empty.

o Example of use: print spooling (producers are jobs that print, consumer is
printer — actually could imagine having multiple printers/consumers).

Bounded Buffer Problem, Continued

e Shared variables:

buffer B(N); // initially empty, can hold N things

Pseudocode for producer: Pseudocode for consumer:
while (true) { while (true) {

Slide 20 item = generate(); item = get (B);
put (item, B); use (item) ;

} }
e Synchronization requirements:

1. At most one process at a time accessing buffer.
2. Never try to get from an empty buffer or put to a full one.

3. Processes only block if they “have to”.

CSCI 3323 September 12, 2018

Bounded Buffer Problem, Continued

o We already know how to guarantee one-at-a-time access. Can we extend
that?

e Three situations where we want a process to wait:
— Only one get/put at a time.

Slide 21 — If B is empty, consumers wait.

— If Bis full, producers wait.

Bounded Buffer Problem, Continued

e What about three semaphores?
— One to guarantee one-at-a-time access.

— One to make producers wait if B is full — so, it should be zero if B is full —
“number of empty slots”?

Slide 22 — One to make consumers wait if B is empty — so, it should be zero if B is

empty — “number of slots in use”?

CSCI 3323 September 12, 2018

Bounded Buffer Problem — Solution

e Shared variables:

buffer B(N); // empty, capacity N
semaphore mutex(1);
semaphore empty (N);
semaphore full (0);

Slide 23 Pseudocode for producer: Pseudocode for consumer:
while (true) { while (true) {
item = generate(); down (full) ;
down (empty) ; down (mutex) ;
down (mutex) ; item = get (B);
put (item, B); up (mutex) ;
up (mutex) ; up (empty) ;
up (full); use (item) ;
__ | y,
4)
e Does what I'm saying about using invariants to reason about concurrent
algorithms make sense to you?
Slide 24

