
CSCI 3323 October 3, 2018

Slide 1

Administrivia

• Reminder: Homework 3 written problems due today; programming problem

due Monday.

• Reminder: Midterm next Wednesday. Review sheet on the course Web site.

• Homework 2 written problems graded. Grades were pretty disappointing

overall, mostly because of the problems involving IPC (the one about

semaphores and the last one). I’m speculating about an extra-credit

assignment on this topic so you can recoup lost points. (I’ll ask about interest

in the minute essay.)

Slide 2

Minute Essay From Last Lecture

• (Almost everyone got it right. Yay!)

CSCI 3323 October 3, 2018

Slide 3

Multithreading in C

• Many ways to do multithreading in C and C++. Until relatively recently,

however, there was nothing about threads in the standard library for either

language.

• Common (at least in UNIXworld) to use POSIX threads; widely available

though not strictly standard-C. Somewhat cumbersome to use but workable.

• Support for threads added to C and C++ with C11, C++11. Both somewhat

low-level (compared to higher-level ways of expressing concurrency) and

based on POSIX threads. C++11 support is somewhat nicer, though a little

hard to get started with. I admit I’m not sure about C11; support in gcc is

recent.

• OpenMP is a widely-supported set of extensions to C and C++ (and Fortran!)

that support multithreading somewhat more nicely.

Slide 4

POSIX Threads — Basics

• (“Hello world” program on sample programs page.)

• Threads represented by opaque data type pthread t.

• pthread create() creates and starts a thread.

• pthread join waits for a thread to finish.

• How do you say what code the thread is supposed to run, and how do you

pass data to it? Next slide . . .

CSCI 3323 October 3, 2018

Slide 5

POSIX Threads Basics, Continued

• How do you say what code a thread is supposed to run? via a function pointer

to a function that takes one argument (a void *) and returns a void *.

(The function isn’t supposed to actually return anything; instead it’s supposed

to call pthread exit.)

• How do you pass data to threads? via the single parameter to the function.

But it can point to anything — an int in the example, or a struct to pass

multiple values. (Yes, it’s ugly! Well, it’s C. In toy/demo programs it’s not

uncommon to just use global variables.)

Slide 6

POSIX Threads Library Functions

• Mutual exclusion locks: Data type pthread mutex t; functions

pthread mutex init(), pthread mutex destroy(),

pthread mutex lock(), pthread mutex unlock().

• Condition variables: Data type pthread cond t; functions

pthread cond init(), pthread cond destroy(),

pthread cond wait(), pthread cond signal(). Also

pthread cond broadcast().

• (So you can implement monitor-based solutions to problems, though you have

to put in the code yourself to ensure that only one procedure at a time runs.)

• (Examples shortly.)

CSCI 3323 October 3, 2018

Slide 7

Other Semi-Standard IPC Library Functions

• Semaphores: Data type sem t; functions sem init(),

sem destroy(), sem wait(), sem post().

• (Examples shortly.)

Slide 8

Bounded Buffer Problem Revisited

• We didn’t talk about using the invariants idea to reason about solutions to this

problem. Could we? I’m not sure it makes sense to do it formally, but . . .

CSCI 3323 October 3, 2018

Slide 9

Bounded Buffer Semaphore Solution — Informal

Invariant

• The value of semaphore empty represents the number of empty slots in the

buffer.

• The value of semaphore full represents the number of full slots in the

buffer.

• Semaphore mutex is one if some process is accessing the shared buffer,

zero otherwise.

• If you look at the code, all of this is true initially, remains true throughout

execution, and ensures that the solution works as intended.

Slide 10

Bounded Buffer Monitor Solution — Informal Invariant

• Names of condition variables were badly chosen. I just revised so that names

represent what has to be true to not wait.

• Variable count represents the number of slots in use.

• Condition variable not full represents producers suspended because the

buffer is full.

• Condition variable not empty represents consumers suspended because

the buffer is empty.

• If you look at the code, all of this is true initially, remains true throughout

execution, and ensures that the solution works as intended.

CSCI 3323 October 3, 2018

Slide 11

Bounded Buffer Problem — Implementations

• Sample programs page has semaphore- and monitor-based implementations

of bounded buffer problem.

• A possible complication is that I didn’t want to just let the simulation run

“forever”; instead I chose to specify a total number of items to

produce/consume. So I need additional counters shared among threads,

which means more synchronization.

• (Look at code.)

Slide 12

Another Classical IPC Problem — Readers/Writers

• First proposed by Courtois et al in 1971.

• Problem posits a file (a database maybe) to be shared among processes. It’s

safe to have any number of processes read from the file as long as none of

them is changing it. To write to the file, however, a process needs exclusive

access.

• Textbook shows a solution using semaphores.

• I found solutions using a monitor in various online sources.

CSCI 3323 October 3, 2018

Slide 13

Readers/Writers using Semaphores

• Shared variables:

semaphore reader_lock(1);

semaphore writer_lock(1);

int reader_count = 0;

• Routines:

read() {

down(&reader_lock);

reader_count += 1;

if (reader_count == 1) {

down(&writer_lock);

}

up(&reader_lock);

/* do actual read */

down(&reader_lock);

reader_count -= 1;

if (reader_count == 0) {

up(&writer_lock);

}

up(&reader_lock);

}

write() {

down(&writer_lock);

/* do actual write */

up(&writer_lock);

}

Slide 14

Readers/Writers using Semaphores — Informal

Invariants

• Variable reader count represents the number of readers.

• The value of semaphore reader lock is 0 when the number of readers is

changing, 1 otherwise.

• The value of semaphore writer lock is 0 when there is a writer,

1 otherwise.

CSCI 3323 October 3, 2018

Slide 15

Readers/Writers using a Monitor

• Shared variables:

int readers = 0;

int writers = 0;

int readers_waiting = 0;

condition can_read;

condition can_write;

• (Continued on next slide.)

Slide 16

Readers/Writers using a Monitor, Continued

• Routines:

begin_read() {

if (writers == 1) {

readers_waiting += 1;

wait(can_read);

readers_waiting -= 1;

}

readers += 1;

signal(can_read);

}

end_read() {

readers -= 1;

if (readers == 0)

signal(can_write);

}

begin_write() {

if ((writers == 1) || (readers > 0)) {

wait(can_write);

}

writers = 1;

}

end_write() {

writers = 0;

if (readers_waiting > 0)

signal(can_read);

else

signal(can_write);

}

CSCI 3323 October 3, 2018

Slide 17

Readers/Writers using a Monitor — Informal Invariants

• Variable readers represents the number of readers reading.

• Variable writers is 1 if a writer is writing, 0 otherwise.

• Variable readers waiting represents the number of readers waiting.

• Condition variable can read represents readers waiting because a writer is

writing.

• Condition variable can write represents writers waiting because at least

one reader is reading.

Slide 18

Readers/Writers Problem — Implementations

• Sample programs page has semaphore- and monitor-based implementations

of readers/writers buffer problem.

CSCI 3323 October 3, 2018

Slide 19

Readers/Writers Problem, Continued

• A weakness of these solutions is that they could block writers indefinitely.

• Fixing that — “priority readers/writers” problem.

Slide 20

Minute Essay

• If you lost a lot of points on one or more of the Homework 2 written problems,

what do you think went wrong? (Did you not understand the problem(s), had

we not done enough relevant examples in class, . . . ?)

• If I do make up an extra-credit assignment on IPC, how likely would you be to

try it? I was thinking a due date of a week from Friday so I can include any

points in your midterm average, but if you don’t care about that you could turn

it in later.

