
CSCI 3323 October 15, 2018

Slide 1

Administrivia

• I’m still hoping/planning to make up an extra-credit assignment, but it’s taking

more time than I thought.

Slide 2

Homework 3 Essays

• On written problems, no clear consensus, and nothing really stood out,

except:

One person commented on how pseudocode was less satisfactory than real

code because you couldn’t demonstrate correctness by testing. For

sequential programs that’s kind of true, though it depends on how good the

tests are, no? But for concurrent programs, it’s less true because output can

vary depending on timing.

• On programming problem, not many people have turned in final versions, but

among those that have:

A few thought this was fun (well, if you like programming? as I do!)

A few commented that figuring out one algorithm generally made the next one

easier. Makes sense!



CSCI 3323 October 15, 2018

Slide 3

Memory Management — Overview

• One job of operating system is to “manage memory” — assign sections of

main memory to processes, keep track of who has what, protect processes’

memory from other processes.

• As with CPU scheduling, we’ll look at several schemes, starting with the very

simple. For each scheme, think about how well it solves the problem, how it

compares to others.

• As with processes, there’s a tradeoff between simplicity and providing a nice

abstraction to user programs.

Slide 4

Simple Schemes — No Abstraction

• Memory (a.k.a. “RAM”) can be thought of as a very long list of numbered cells

(usually bytes). (This is a somewhat simplified view but good enough for our

purposes.)

• Simplest schemes for managing it don’t try to hide that view. (Names for

these come from older edition of Tanenbaum’s book.)



CSCI 3323 October 15, 2018

Slide 5

Monoprogramming

• Idea — only one user program/process at a time, stays resident until finished.

Only decision to make is how much memory to devote to O/S itself, where to

put it.

(Figure 3-1 in textbook.)

• Consider tradeoffs — complexity versus flexibility, efficient use of memory.

• Used in very early mainframes, MS-DOS; still used in some embedded

systems.

Slide 6

Multiprogramming With Fixed Partitions

• Idea — partition memory into fixed-size “partitions” (maybe different sizes),

one for each process. Possibly also add the ability to “swap” programs (later

slide).

• Limits “degree of multiprogramming” (how many processes can run

concurrently).

• Probably necessitates “admissions scheduling” (some way of controlling

which processes even get to start) — either one input queue per partition, or

one combined queue.

If one combined queue, how to choose from it when a partition becomes

available? first job that fits? largest job that fits? etc.

• Consider tradeoffs — complexity versus flexibility, efficient use of memory.

• Used in early mainframes.



CSCI 3323 October 15, 2018

Slide 7

Multiprogramming With Variable Partitions

• Idea — separate memory into partitions as before, but allow them to vary in

size and number. (Figure 3-4 in textbook.)

I.e., “contiguous allocation” scheme.

• Like previous scheme, necessitates admissions scheduling.

• Requires that we keep track of locations and sizes of processes’ partitions,

free space. Notice potential for memory fragmentation.

• Consider tradeoffs — complexity versus flexibility, efficient use of memory.

• Used in early mainframes.

Slide 8

Multiprogramming With Variable Partitions, Continued

• Another implementation issue — how to decide, when starting a process,

which of the available free chunks to assign.

• Several strategies possible:

– First fit.

– Next fit.

– Best fit.

– Worst fit.

– Quick fit.



CSCI 3323 October 15, 2018

Slide 9

Multiprogramming with Fixed/Variable Partitions —

Recap

• Comparing the two schemes:

– Similar admission scheduling issues.

– Complexity versus flexibility, memory use also roughly similar.

• Either could be adequate for a simple batch system, maybe with the addition

of swapping.

Slide 10

Sidebar: Program Relocation

• Recall(?) that for most systems memory can be thought of a one big

one-dimensional space. Hardware references to memory are via an index into

this space (“absolute address”).

• At the machine-instruction level, load/store references to memory use an

absolute address.

• You may recall from CSCI 2321 that in the MIPS architecture this address can

be computed based on contents of a register or on the program counter, and

that doesn’t change based on where the program resides in memory. But for

some instructions the address comes from the actual instruction (i.e., it’s an

absolute address).



CSCI 3323 October 15, 2018

Slide 11

Program Relocation, Continued

• You may also recall from the discussion of assembling and linking that

generating these absolute addresses is a bit complicated, since they can’t be

known at least until link time. But even then, they depend on where the

program will reside in memory.

• In the very early days, all programs loaded at address 0, so no problem. With

monoprogramming, too, all programs reside at the same address, so no

problem. (SPIM works that way.)

• What happens, though, if you want to have multiple programs in memory?

compilers/assemblers can’t generate correct absolute addresses.

(Figure 3-2 in textbook.)

• This is the “relocation problem”. What to do?

Slide 12

Program Relocation, Continued

• One solution: Generate, as part of the executable, a list of locations where

there’s an absolute address, and modify it as the program is loaded into

memory. (This won’t work well if we introduce swapping, discussed soon.)

• A better solution involves translating addresses “on the fly” — and this

solution also helps with memory protection (making sure processes don’t

have access to each other’s data, at least without explicit sharing).



CSCI 3323 October 15, 2018

Slide 13

Sidebar: The “Address Space” Abstraction

• Basic idea is somewhat analogous to process abstraction, in which each

process has its own simulated CPU. Here, each process has its own

simulated memory.

• As with processes, implementing this abstraction is part of what an operating

system can/should do.

• Usually, though, O/S needs help from hardware . . .

Slide 14

Dynamic Address Translation

• Underlying idea — separate program addresses (relative to start of program’s

“address space”) from physical addresses (memory locations), and map

program addresses to physical addresses. Also try to identify out-of-bounds

addresses.

• Only practical way to implement — hardware “memory management unit” that

logically sits between the CPU and memory. (Figure 3-8 in text.)

Simplifying, CPU references program addresses, MMU turns them into

physical addresses, generates interrupt if invalid.



CSCI 3323 October 15, 2018

Slide 15

A Simple MMU

• Idea — map each process’s address space to a contiguous chunk of real

memory, based on base and limit addresses (B and L):

Program address p maps to memory location B + p.

If B + p > L, invalid (out of bounds).

If B and L are different for each process — solves both problems.

• Turn this into hardware (MMU) by using base and limit registers.

• Solves both the relocation and protection problems.

• Consider tradeoffs — complexity versus flexibility.

• Used in some early mainframes and PCs.

Slide 16

Memory Management with Contiguous Allocation

• Simplest MMU (just described) uses two registers, base and limit. This more

or less implies that each process can have only one contiguous chunk of

memory. (Notice here the interaction between hardware design and O/S

design.)

• Key issues here are keeping track of what space is used by what, and

deciding how to assign memory to processes.

(Figure 3-3 in text.)



CSCI 3323 October 15, 2018

Slide 17

Swapping

• Idea — move processes into / out of main memory (when not in main

memory, save on disk).

(Aside — can we run a program directly from disk?)

• Addresses both questions from previous slide; could also provide a way to

“fix” fragmentation.

• Implies another level of scheduling (what to swap in/out).

• Makes non-dynamic solutions to relocation problem much less attractive.

MMU-based solution still works, though, and adds memory protection.

• Consider tradeoffs again — complexity versus flexibility, efficient use of

memory.

Slide 18

Sidebar: Three-Level Scheduling

• Basic idea — break up problem of scheduling (batch) work into three parts:

– Admissions scheduling — choose from input queue which jobs to “let into

the system” (create processes for).

– Memory scheduling — choose from among processes in system which to

keep in memory, which to “swap out” to disk.

– CPU scheduling — choose from among processes in memory which to

actually run.

• Points to consider:

– Are there advantages to limiting how many processes, how many in

memory? What criteria could we use?

– Are there advantages to the explicit three-level scheme?

– Would this (or a variant) work for interactive systems?

– Do all three schedulers have to be efficient?



CSCI 3323 October 15, 2018

Slide 19

Simple Memory Management — Recap

• Contiguous-allocation schemes are simple to understand, implement.

• But they’re not very flexible — process’s memory must be contiguous,

swapping is all-or-nothing.

• Can we do better? yes, by relaxing one or both of those requirements —

“paging”.

Slide 20

Paging — Overview

• Idea — divide both address spaces and memory into fixed-size blocks

(“pages” and “page frames”), allow non-contiguous allocation.

• Seems like this would be more flexible and make better use of memory, but

would be much more complex? Yes . . . (To be continued.)



CSCI 3323 October 15, 2018

Slide 21

Minute Essay

• None really — just sign in.


