
CSCI 3323 November 5, 2018

Slide 1

Administrivia

• Homework 4 graded. I reduced the late penalty to 5% per working day since

apparently this is a busy time of year.

• Reminder/change: Homework 5 written problems due today. Programming

problems due Wednesday.

• Sample solution to Homework 3 programming problem posted (finally).

Slide 2

Minute Essay From Last Lecture

• Most people got the basic idea: If the two filesystems don’t support exactly

the same abstraction, problems could arise in copying.

• A few people also thought it could be a problem if the two filesystems

implement the idea of files in different ways (e.g., with i-nodes versus with a

FAT), but a well-written copy program should cope with that.



CSCI 3323 November 5, 2018

Slide 3

Homework 4 Essays

• A few people found the problems fairly straightforward (one said they seemed

daunting at first but then turned out not to be).

• More, however, found the problems difficult. In truth this kind of puzzles me —

to me it seems like the pictures are simple, and once you understand them

filling in the details is straightforward. I guess not?

Slide 4

Sidebar: Linux Memory Management — the “OOM

Killer”

• (This can be a problem in doing the first programming problem for

Homework 5.)

• Apparently on (some?) Linux systems malloc returns true as long as you

haven’t asked for more memory than you’re allowed to have. But it doesn’t

actually try to find space for the allocated memory (either in real memory or

on disk) until it’s used — i.e., it “overcommits” memory resources.

• So what happens when a process tries to use space that was allocated but

not previously used? system tries to find some — and if it can’t, it calls the

“OOM killer” to terminate one or more processes.

• (My first reaction is “what a bad design!” but it has its defenders. I’m still

skeptical.)



CSCI 3323 November 5, 2018

Slide 5

Files and Filesystems — Review/Recap

• Files and filesystems are a key abstraction provided by O/S’s.

• Unlike with processes, details of abstraction can vary (e.g., case sensitivity,

notions of ownership and permissions).

• Once the details of the abstraction are defined, O/S designer must figure out

how to implement it, building on what the hardware supports (typically access

to blocks by block number). Many variations possible.

Slide 6

Filesystem Performance

• Access to disk data is much slower than access to memory: seek time plus

rotational delay plus transfer time. (Well, for disks that rotate. Solid-state

disks don’t, but they have their own issues, e.g., limits on number of writes?)

• So, file systems include various optimizations . . .



CSCI 3323 November 5, 2018

Slide 7

Improving Filesystem Performance — Caching

• Idea — keep some disk blocks in memory; keep track of which ones are there

using hash table (base hash code on device and disk address).

• When cache is full and we must load a new block, which one to replace?

Could use algorithms based on page replacement algorithms, could even do

LRU accurately — though that might be wrong (e.g., want to keep data blocks

being filled).

• When should blocks be written out?

– If block is needed for file system consistency, could write out right away. If

block hasn’t been written out in a while, also could write out, to avoid data

loss in long-running program.

– Two approaches: “Write-through cache” (Windows) — always write out

modified blocks right away. Periodic “sync” to write out (UNIX).

Slide 8

Improving Filesystem Performance — Block

Read-Ahead

• Idea — if file is being read sequentially, can read some blocks “ahead”. (Of

course, doesn’t help if file is being read non-sequentially. Decide based on

recent access patterns.)



CSCI 3323 November 5, 2018

Slide 9

Improving Filesystem Performance — Reducing Disk

Arm Motion

• Group blocks for each file together (easier if bitmap is used to keep track of

free space). If not grouped together, “disk fragmentation” may affect

performance.

• If i-nodes are being used, place them so they’re fast to get to (and so maybe

we can read an i-node and associated file block together).

Slide 10

Disk Fragmentation

• Idea: If blocks that make up a file are (mostly) contiguous, faster to read them

all. If not, “disk fragmentation”.

• How likely is disk fragmentation? Depends on filesystem, strategy for

allocating space for files.

• “Defragmenter” utility can be run to correct it. Windows comes with one.

Linux doesn’t. The claim is that UNIX and Linux filesystems typically don’t

become fragmented unless the disk is close to full.



CSCI 3323 November 5, 2018

Slide 11

Filesystems — Quotas

• Why have quotas? Disk space is cheap, right? yes, but more space used

means more to back up, and on multi-user systems there are fairness issues,

and the possibility that one careless user will negatively affect others.

• Implementation involves keeping track, for each user, of space used versus

space allowed. Must be updated every time a file is changed/created/deleted.

Some systems allow “grace period”, but eventually all will disallow, for user

over quota, creation of new files or expansion of existing files.

Slide 12

Filesystem Reliability — Backups

• Why do backups? sometimes data is more valuable than physical medium,

and might need to

– Recover from disaster (rare these days, but possible).

– Recover from stupidity (less rare – hence “recycle bin” idea).

• Many issues involved: which files to back up, how to store backup media, etc.,

etc. Discussion in textbook.



CSCI 3323 November 5, 2018

Slide 13

Filesystem Reliability — Consistency Checks

• Can easily happen that true state of filesystem is represented by a

combination of what’s on disk and what’s in memory — a problem if shutdown

is not orderly.

• Solution is a “fix-up” program (UNIX fsck, Windows scandisk). Kinds of

checking we can do:

– Consistency check: For each block, how many files does it appear in

(treating free list as a file)? If other than 1, problem — fix it as best we can.

– File consistency check: For each file, count number of links to it and

compare with number in its i-node. If not equal, change i-node.

– Etc., etc. — see text.

Slide 14

Example Filesystem — MS-DOS FS

• Filename restriction — eight-character name plus three-character

extension. (!) (Textbook doesn’t say this, but there are/were ways of faking

longer names, basically by mapping longer names into inscrutable

short-enough ones.)

• Directory entries contain filename, attributes, timestamp, size, and block

number of first block. How are other blocks found? FAT (File Allocation Table).

• Various versions depending on how many bits used to store block number

(FAT-12, FAT-16, FAT-32, though the last is apparently really FAT-28). Each

defines a set of permitted block sizes, all multiples of 512K.

• Simple, which is good, but imposes limits on file size and partition size.

Keeping entire FAT in memory could be a problem if it’s big (depends on

number of bits used for block number).



CSCI 3323 November 5, 2018

Slide 15

Example Filesystem — UNIX V7

• Filename restriction — each part of path name at most 14 characters.

• So, directory entry is just 14-byte name and i-node number.

• I-nodes are all stored in a contiguous array at the start of the file system (right

after boot block and a “superblock” containing additional parameters).

• What’s in each i-node? attributes (permission bits, numeric owner and group

ID, timestamps, links count) and list of blocks — last three are pointers to

“single indirect”, “double indirect”, and “triple indirect” blocks. (Figure 4-33 in

textbook.)

Slide 16

Example Filesystem — UNIX V7, Continued

• To find a file:

– Start with root directory — its i-node is in a known place.

– Scan directory for first part of path, get its i-node, read it, scan for next part

of path, etc.

– Relative path names are handled by including “.” and “..” in each directory,

so no special code needed(!).

(Figure 4-34 in textbook.)

• Not so simple, and still imposes a limit on total file size, but flexible? and

probably requires less system memory, since only i-nodes for open files need

to be in memory.



CSCI 3323 November 5, 2018

Slide 17

UNIX “Everything’s a File”

• UNIX represents a lot of resources as “files” (so that programmers can work

with them using familiar(?) mechanisms for accessing files).

• Already mentioned — /dev contains “special files” representing I/O devices,

real and pretend (“pseudo-terminals”).

• Somewhat similar is /proc, which presents information about system and

all running processes as “files” (but they aren’t really). /sys

(Linux-specific?) is similar.

Slide 18

UNIX Filesystems — Hard Links versus Symbolic Links,

Revisited

• As mentioned previously, many filesystems provide a mechanism for creating

not-strictly-hierarchical relationships among files/folders. UNIX typically has

two:

– “Hard” links allow multiple directory entries to point to the same i-node.

– “Soft” (symbolic) links are a special type of file containing a pathname

(absolute or relative).

• (Why two? Good question. Compare and contrast . . . )



CSCI 3323 November 5, 2018

Slide 19

Minute Essay

• If you had trouble with Homework 4, can you say at all what you found so

difficult?

• Questions about filesystems before we move on? otherwise just sign in.


