
CSCI 3323 November 7, 2018

Slide 1

Administrivia

• Reminder: Homework 5 programming problems due today.

• Draft version of Homework 6 on the Web. Final version to be posted tomorrow

I hope. Due next Wednesday. One more homework after that.

Slide 2

Minute Essay From Last Lecture

• One person asked whether Mac OS X uses a UNIX filesystem. According to

Wikipedia, no. But no current system uses exactly the filesystem described

for UNIX V7 last time.



CSCI 3323 November 7, 2018

Slide 3

Filesystems — What Do Current Systems Use?

• Linux — default is now probably ext4, successor to ext2 and ext3 with

journalling. Very much like UNIX V7 conceptually, though with support for

much longer filenames. Other filesystems possible/supported, and support for

accessing various Windows filesystems provided via Samba.

• Mac OS X (“macOS”?) — Apple File System, externally pretty UNIX-like,

possibly internal differences.

• Windows — NTFS is default, support still provided for FAT-xx.

Slide 4

I/O Management

• Operating system as resource manager — share I/O devices among

processes/users.

• Operating system as virtual machine — hide details of interaction with

devices, present a nicer interface to application programs.



CSCI 3323 November 7, 2018

Slide 5

I/O Hardware, Revisited

• First, a review of I/O hardware — simplified and somewhat abstract view,

mostly focusing on how low-level programs communicate with it.

• Many, many kinds of I/O devices — disks, tapes, mice, screens, etc., etc. Can

be useful to try to classify as “block devices” versus “character devices”.

• Many/most devices are connected to CPU via a “device controller” that

manages low-level details — so O/S talks to controller, not directly to device.

• Interaction between CPU and controllers is via registers in controller (write to

tell controller to do something, read to inquire about status), plus (sometimes)

data buffer.

Very old example: Parallel port (connected to printers, etc.) has control

register (example bit — linefeed), status register (example bit — busy), data

register (one byte of data). These map onto the wires connecting the device

to the CPU.

Slide 6

Accessing Device Controller Registers

• Two basic approaches:

– Define “I/O ports” and access via special instructions.

– “Memory-mapped I/O” — map some (real) addresses to device-controller

registers.

Some systems use hybrid approach.

• Making either one work requires some hardware complexity, and there are

tradeoffs; memory-mapped I/O currently more common.



CSCI 3323 November 7, 2018

Slide 7

Direct Memory Access (DMA)

• When reading more than one byte (e.g., from disk), device controller typically

reads into internal buffer, checking for errors. How to then transfer to

memory?

• One way: CPU makes transfer, byte by byte.

• Another way: DMA controller makes transfer, having been given a target

memory location and a count.

(Figure 5-4 in textbook.)

• Which is better? consider speed of DMA versus speed of CPU, potential for

overlapping data transfer and computation. DMA is extra hardware and could

be slower than CPU, but would appear to offer potential to overlap transfer

and computation.

Slide 8

Polling Versus Interrupts

• Three basic approaches to writing programs to do I/O: “programmed”,

“interrupt-driven”, and using DMA.

• Which to use — it depends. (No surprise, right?)



CSCI 3323 November 7, 2018

Slide 9

Programmed I/O

• Basic idea: Program tells controller what to do and busy-waits until it says it’s

done.

• Simple but potentially inefficient — for the system as a whole, anyway.

Slide 10

Interrupt-Driven I/O

• Basic idea: Program tells controller what to do and then blocks. While it’s

blocked, other processes run. When requested operation is done, controller

generates interrupt. Interrupt handler unblocks original program (which, on a

read operation, would then obtain data from device controller).

• More complex, but allows other processing to happen while waiting, so

potentially more efficient for system as a whole. Could, however, result in lots

of interrupts. (Tanenbaum says one per character/byte. Can that be true for

disks?? Open question . . . )



CSCI 3323 November 7, 2018

Slide 11

I/O Using DMA

• Basic idea: Similar to interrupt-driven I/O, but transfer of data to memory done

by DMA controller, only one interrupt per block of data.

• Complexity versus efficiency tradeoffs similar to interrupt-driven I/O, but may

result in fewer interrupts and allow overlap of computation and I/O.

Slide 12

Interrupts Revisited

• When I/O device finishes its work, it generates interrupt, and then —

something happens. What?

• Hardware and software aspects . . .

(Figure 5-5 in textbook.)



CSCI 3323 November 7, 2018

Slide 13

Interrupts, Continued

• I/O device “interrupts” by signalling interrupt controller.

• Interrupt controller signals CPU, with indication of which device caused

interrupt, or ignores interrupt (so device controller keeps trying) if interrupt

can’t be processed right now.

• Processing is then similar to what happens on traps (interrupts generated by

system calls, page faults, other errors) . . .

Slide 14

Interrupts, Continued

• On interrupt, hardware locates proper interrupt handler (probably using

interrupt vector), saves critical info such as program counter, and transfers

control (switching into supervisor/kernel mode).

• Interrupt handler saves other info needed to restart interrupted process, tells

interrupt controller when another interrupt can be handled, and performs

minimal processing of interrupt.



CSCI 3323 November 7, 2018

Slide 15

Interrupts, Continued

• Worth noting that pipelining (very common in current processors) complicates

interrupt handling — when an interrupt happens, there could be multiple

instructions in various stages of execution. What to do?

• “Precise interrupts” are those that happen logically between instructions. Can

try to build hardware so that this happens always, or sometimes.

• “Imprecise interrupts” are — the other kind. Hardware that generates these

may provide some way for software to find out status of instructions that are

partially complete. Tanenbaum says this complicates O/S writers’ jobs.

Slide 16

Goals of I/O Software

• Device independence — application programs shouldn’t need to know what

kind of device.

• Uniform naming — conventions that apply to all devices (e.g., UNIX path

names, Windows drive letter and path name).

• Error handling — handle errors at as low a level as possible, retry/correct if

possible.

• “Synchronous interface to asynchronous operations.”

• Buffering.

• Device sharing / dedication.



CSCI 3323 November 7, 2018

Slide 17

Layers of I/O Software

• Typically organize I/O-related parts of operating system in terms of layers —

more modular.

• Usual scheme involves four layers:

– User-space software — provide library functions for application programs

to use, perform spooling.

– Device-independent software — manage dedicated devices, do buffering,

etc.

– Device drivers — issue requests to device (or controller), queue requests,

etc.

– Interrupt handlers — process interrupt generated by device (or controller).

(Figure 5-11 in textbook.)

Slide 18

User-Space Software

• Library procedures:

– Simple wrappers — e.g., write just sets up parameters and makes

system call.

– Formatting, e.g., printf.

• Spooling:

– Actual I/O to device (e.g., printer) handled by background process.

– User programs put requests in special directory.

– Examples — printing, network requests.



CSCI 3323 November 7, 2018

Slide 19

Device-Independent Software

• Uniform interface to device drivers — naming conventions, protection (who

can access what), etc.

• Buffering — simpler interface for user programs, applies to both input and

output.

• Error reporting — actual I/O errors, and also impossible requests from

programs.

• Allocating and releasing dedicated devices.

• Providing device-independent block size — more uniform interface.

Slide 20

Device Drivers

• Idea is to have something that mediates between device controller and O/S —

so, need one of these for every combination of O/S and device. Often written

by device manufacturer.

• Called by other parts of O/S, we hope according to one of a small number of

standard interfaces — e.g., “block device” interface, or “character device”

interface. Communicates with device controller in its language (so to speak).

• Normally run in kernel mode. Formerly often compiled into kernel, now

usually loaded dynamically (details vary).



CSCI 3323 November 7, 2018

Slide 21

Device Drivers, Continued

• When called, must:

– Check that parameters are okay (return if not).

– Check that device is not in use (queue request if it is).

– Talk to device — may involve many commands, may require waiting (block

if so).

– Check for errors, return info to caller. If there are queued requests,

continue with next one.

Slide 22

Interrupt Handlers

• Background: Something at one of the higher levels has initiated an I/O

operation and blocked itself (e.g., using a semaphore). When operation

completes, interrupt handler is run.

• Interrupt handler must:

– Save state of current process so it can be restarted.

– Deal with interrupt — acknowledge it (to interrupt controller), run interrupt

service procedure to get info from device controller’s registers/buffers.

– Unblock requesting process.

– Choose next process to run — maybe process that requested I/O, maybe

interrupted process, maybe another — and do context switch.



CSCI 3323 November 7, 2018

Slide 23

Minute Essay

• Questions? otherwise just sign in.


