
CSCI 3323 November 14, 2018

Slide 1

Administrivia

• Reminder: Homework 6 due Friday (course Web site says today, for simplicity,

but okay to turn in through Friday).

(I just fixed a little glitch in one of the problems, namely the powers of 2

corresponding to K, M, and G.)

• Homework 7 on the Web. Due the Monday after the holiday.

Slide 2

GUIs — Review/Recap

• Keyboard: Hardware delivers very low-level info (individual key press/release

actions). Device driver translates these to character codes, typically using

configurable keymap.

• Mouse: Hardware delivers very low-level info (change in coordinates, status

of buttons).

• Display: Hardware can be fairly simple (“raster graphics”) or pretty

sophisticated (independent processor capable of independent operation).

How the O/S communicates with it varies by platform — Windows approach

explicitly object-oriented, traditional UNIX/Linux based on protocol (X11) that

works over network too.



CSCI 3323 November 14, 2018

Slide 3

GUIs — Programs

• Of course, many examples of software using this kind of device.

• Libraries for writing such software vary by language:

• Java and Scala include lots of library classes, mostly fairly high-level/abstract.

• Nothing standard in C, but most platforms offer various libraries. Lowest-level

one in UNIXworld is “X11”.

Slide 4

GUI-Based Programming

• Input from keyboard and mouse captured by O/S and turned into messages

to process owning appropriate window.

• Typical structure of GUI-based program is a loop to receive and dispatch

these messages — “event-driven” style of programming.

• Details vary between Windows and X, but overall idea is similar. (Examples in

Figures 5-34 and 5-36.) I’ve also written programs using the fairly low-level

X11 interface, but — maybe not. But it’s doable, even from C, though of

course not completely portable.



CSCI 3323 November 14, 2018

Slide 5

Network Terminals — Hardware

• Keyboard, mouse, and display as described previously, plus local processor;

connected to remote system.

• Local processor can be very capable (X terminal, or even PC configured to

run as one) or more primitive.

Slide 6

I/O in Windows

• Hardware Abstraction Layer (HAL) attempts to insulate rest of O/S from some

low-level details — e.g., I/O using ports versus memory-mapped I/O.

• Standard interface to device drivers — Windows Driver Model. Drivers are

passed I/O Request Packet objects.



CSCI 3323 November 14, 2018

Slide 7

I/O in UNIX/Linux

• Access to devices provided by special files (normally in /dev/*), to provide

uniform interface for callers. Two categories, block and character. Each

defines interface (set of functions) to device driver. Associated with each

special file are major and minor device numbers, with major device number

used to locate specific function. (Look at some output of ls -l /dev.)

• For block devices, buffer cache contains blocks recently/frequently used.

• For character devices, optional line-discipline layer provides some of what we

described for text-terminal keyboard driver.

• Streams provide additional layer of abstraction for callers — can interface to

files, terminals, etc. (This is what you access with *scanf, *printf.)

Slide 8

“Everything’s a File” Revisited

• I mentioned the pseudofilesystem /proc? which supposedly you can

read/write just as if it were a file?

• I wrote some throwaway code to access “files” within it and learned(?) that

while C stream I/O (fopen, fgetc, etc.) didn’t work well, the lower-level

routines (open, read, etc.) did.



CSCI 3323 November 14, 2018

Slide 9

Linux Memory Management, Revisited

• I mentioned in a previous class that Linux systems (often?) “overcommit”

memory — allow you to allocate more than you can actually use?

• I wrote a couple of programs illustrating this in action . . .

Slide 10

Minute Essay

• Do you plan to be here Monday?


