
CSCI 3323 November 19, 2018

Slide 1

Administrivia

• Reminder: Homework 6 due today. Homework 7 due next Monday.

Slide 2

The Boot Process

• What happens between the time you turn the computer on (or initiate reboot)

and the point at which you get a login prompt is . . . complicated, mysterious,

and involves both hardware and software.

• Today’s topic is to demystify it as much as possible. Textbook has some

useful short information, indexed under “boot” and “BIOS”. I’m basing this

lecture on that, a book Linux Kernel Internals and various online sources.



CSCI 3323 November 19, 2018

Slide 3

Booting — Hardware

• When a PC is powered on, hardware starts the BIOS (Basic Input Output

System), a program that lives in/on some form of nonvolatile memory. It

contains functions to read from the keyboard, write to the screen, and do disk

I/O. (Caveat: Recent hardware replaces this with UEFI (Unified Extensible

Firmware Interface). Conceptually similar as best I can tell.)

• This BIOS first does a “Power-On Self Test” (POST) — check how much

memory is installed, whether basic devices are installed and responding.

• It determines which device to try to boot from based on information also

stored in non-volatile memory. It then reads the first sector from this device —

“boot sector” or “master boot record”.

Slide 4

Boot Sector / Master Boot Record

• First sector on device from which we’re booting must contain (in a format

known to the hardware / BIOS) a little bit of code, enough to get the boot

process going.

• For partitioned devices, this first sector (MBR) also contains a partition table,

indicating which partition contains the logical device from which booting is

supposed to be done, and where to find that logical device’s boot sector.

• Either way, we get a little bit of code, which when executed (presumably with

the help of the BIOS) reads in — something else — from disk to memory, and

transfers control to it. The “something else” could be the actual operating

system, or a “boot loader” (such as GRUB or LILO, for Linux systems).

• (From here on, the discussion will be somewhat Linux-specific.)



CSCI 3323 November 19, 2018

Slide 5

Boot Loader

• GRUB looks at configuration files (findable from /boot), possibly gets input

from the keyboard, and decides what to boot.

• If it’s Linux, part of the configuration is the name of the file containing the

(compressed) kernel. This gets uncompressed and read into memory, and

control is transferred to it.

• (What happens if it’s Windows being booted? good question, but my guess is

that GRUB reads in whatever boot sector would have been used to boot

Windows in a single-boot system, and transfers control to its little bit of code).

Slide 6

Starting the Kernel

• First thing executed is assembly code that does hardware initialization,

including:

• Put the processor in protected mode.

• Set up kernel stack.

• Do initialization for the MMU (set up page table for kernel).

• Do initialization for interrupt processing (interrupt table/vector).



CSCI 3323 November 19, 2018

Slide 7

Starting the Kernel, Continued

• Next, control is transferred to a C function that begins initializing data

structures for the kernel.

• What’s executing at this point is “process 0”, which will become the “idle

process”, after doing a little more initialization.

Slide 8

Initialization (Old Way)

• Daemons to manage the buffer cache (bdflush) and swapping (kswap)

are started.

• Filesystems are initialized and the root filesystem mounted.

• An attempt is made to connect with the console and open file descriptors for

stdin, stdout, stderr.

• init program is found and started.



CSCI 3323 November 19, 2018

Slide 9

Initialization — init Program

• Background: UNIX/Linux has a notion of “run levels” — typically 1 is

single-user, 3 is text-only, 5 is graphical, etc.

• init does more initialization (including closing/reopening stdin, etc.), reads

/etc/inittab, and “does what it says”, depending on run level. Default

level (for boot) is specified in /etc/inittab. Rest of the file says what to

do, depending on run level. Some of “what to do” involves running scripts in

/etc/rc.d.

• Typically some of what’s started is one or more processes that accept logins

— “virtual consoles” and/or graphical login manager.

• init then waits for any requests to change the runlevel (e.g., using

command init).

Slide 10

Initialization (Old Versus New)

• The preceding slides describe how things were in UNIX/Linux for a long time.

• Over the past few years many Linux distributions have dropped init in favor

of systemd. Controversial move (“what was wrong with the old way?”), but

proponents of systemd say it’s more capable and flexible.

• With systemd, apparently kernel starts it up immediately, rather than first

starting some daemons and mounting filesystems



CSCI 3323 November 19, 2018

Slide 11

Initialization — systemd Program

• Filesystems defined in /etc/fstab are mounted.

• /etc/systemd/system/default.target is read to determine

what services to start. (It’s actually a symbolic link to another file, making it

possible to start the system either with a graphical login prompt or in

“headless” mode.)

• Like init, systemd then waits for requests to start/stop/restart services

(using systemctl).

Slide 12

Minute Essay

• None really — sign in.

• (And best wishes for a good holiday!)


