CSCI 3323 (Principles of Operating Systems), Fall 2020

Homework 4a

Credit: 50 points.

1 Reading

Be sure you have read, or at least skimmed, Chapter 3.

2 Problems

Answer the following questions. You may write out your answers by hand and scan them, or you
may use a word processor or other program, but please submit a PDF or plain text via e-mail to
my TMail address. (No links to shared files on Google Drive please.) Please use a subject line that
mentions the course and the assignment (e.g., “csci 3323 hw 4a” or “O/S hw 4a”).

(Note: In all of the following I assume that addresses refer to bytes, as opposed to words or some
other unit. As far as I know, byte addressability is so much the norm these days that it almost
goes without saying.)

1. (5 points) Consider a computer system with 10,000 bytes of memory whose MMU uses the
simple base register / limit register scheme described in section 3.2 of the textbook, and
suppose memory is currently allocated as follows:

Locations 0-1999 are reserved for use by the operating system.

Process A occupies locations 5000-6999.

Process B occupies locations 7000-8999.

Other locations are free.

Answer the following questions about this system.

(a) What value would need to be loaded into the base register if we performed a context
switch to restart process A?

(b) What memory locations would correspond to the following virtual (program) addresses
in process A?
e 100
e 4000

2. (10 points) Consider a computer system using paging to manage memory; suppose it has
64K (2'6) bytes of memory and a page size of 4K bytes, and suppose the page table for some
process (call it process A) looks like the following.

CSCI 3323 Homework 4a Fall 2020

Page number | Present/absent bit | Page frame number
0 1 5

1 1 6

2 1 2

3 0 ?

4 0 ?

5 1 7

6 0 ?

o 0 ?

15 0 ?

Answer the following questions about this system.

(a)

(b)

How many bits are required to represent a physical address (memory location) on this
system? If each process has a maximum address space of 64K bytes, how many bits are
required to represent a virtual (program) address?

What memory locations would correspond to the following virtual (program) addresses
for process A7 (Here, the addresses will be given in hexadecimal, i.e., base 16, to make
the needed calculations simpler. Your answers should also be in hexadecimal. Note
that if you find yourself converting between decimal and hexadecimal, you are doing the
problem the hard way. Stop and think whether there is an easier way!)

e 0x1420

e (0x2ff0

e 0x4008

e (0x0010

3. (15 points) Now consider a bigger computer system, one in which addresses (both physical
and virtual) are 32 bits and the system has 23? bytes of memory. Answer the following
questions about this system. (You can express your answers in terms of powers of 2, if that
is convenient.)

(a)
(b)

()

What is the maximum size in bytes of a process’s address space on this system?

Is there a logical limit to how much main memory this system can make use of? That
is, could we buy and install as much more memory as we like, assuming no hardware
constraints? (Assume that the sizes of physical and virtual addresses don’t change.)

If page size is 4K (2'2) and each page table entry consists of a page frame number and four
additional bits (present/absent, referenced, modified, and read-only), how much space is
required for each process’s page table? (You should express the size of each page table
entry in bytes, not bits, assuming 8 bits per byte and rounding up if necessary.)

Suppose instead the system uses a single inverted page table (as described in section 3.3.4
of the textbook), in which each entry consists of a page number, a process ID, and
four additional bits (free/in-use, referenced, modified, and read-only), and at most 64
processes are allowed. (Page size is the same as in the previous problem.) How much
space is needed for this inverted page table? (You should express the size of each page
table entry in bytes, not bits, assuming 8 bits per byte and rounding up if necessary.)
How does this compare to the amount of space needed for 64 regular page tables?

CSCI 3323 Homework 4a Fall 2020

4. (10 points) How long it takes to access all elements of a large data structure can depend on
whether they’re accessed in contiguous order (i.e., one after another in the order in which
they’re stored in memory), or in some other order. The classic example is a 2D array, in
which performance of nested loops such as

for (int r = 0; r < ROWS; ++r)
for (int ¢ = 0; ¢ < COLS; ++c)
array[r] [c] = foo(r,c);

can change drastically for a large array if the order of the loops is reversed. Give two explana-
tions for this phenomenon. (Hint: The likeliest explanation these days involves the memory
hierarchy as discussed many weeks ago (registers, caches, RAM, etc. — 9/09 lecture). An-
other explanation, more likely when computers had less memory but still possible, involves
something from the current chapter on memory management.)

5. (10 points) A computer at Acme Company used as a compute server (i.e., to run non-
interactive jobs) is observed to be running slowly (turnaround times longer than expected).
The system uses demand paging, and there is a separate disk used exclusively for paging. The
sysadmins are puzzled by the poor performance, so they decide to monitor the system. It is
discovered that the CPU is in use about 20% of the time, the paging disk is in use about 98%
of the time, and other disks are in use about 5% of the time. They are particularly puzzled
by the CPU utilization (percentage of time the CPU is in use), since they believe most of
the jobs are compute-bound (i.e., much more computation than 1/0). First give your best
explanation of why CPU utilization is so low, and then for each of the following, say whether
it would be likely to increase it and why.

Installing a faster CPU.
Installing a larger paging disk.

Decreasing the number of processes (“degree of multiprogramming”).

)
)
c¢) Increasing the number of processes (“degree of multiprogramming”).
)
) Installing more main memory.

)

Installing a faster paging disk.

3 Pledge

Include the Honor Code pledge or just the word “pledged”, plus at least one of the following about
collaboration and help (as many as apply).! Text in italics is explanatory or something for you to
fill in. For programming assignments, this should go in the body of the e-mail or in a plain-text
file pledge.txt (no word-processor files please).

e This assignment is entirely my own work. (Here, “entirely my own work” means that it’s
your own work except for anything you got from the assignment itself — some programming
assignments include “starter code”, for example — or from the course Web site. In particular,
for programming assignments you can copy freely from anything on the “sample programs

page”.)

! Credit where credit is due: I based the wording of this list on a posting to a SIGCSE mailing list. SIGCSE is
the ACM’s Special Interest Group on CS Education.

CSCI 3323 Homework 4a Fall 2020

I worked with names of other students on this assignment.

I got help with this assignment from source of help — ACM tutoring, another student in the
course, the instructor, etc. (Here, “help” means significant help, beyond a little assistance
with tools or compiler errors.)

e I got help from outside source — a book other than the textbook (give title and author), a
Web site (give its URL), etc.. (Here too, you only need to mention significant help — you
don’t need to tell me that you looked up an error message on the Web, but if you found an
algorithm or a code sketch, tell me about that.)

e I provided help to names of students on this assignment. (And here too, you only need to tell
me about significant help.)

4 Essay

Include a brief essay (a sentence or two is fine, though you can write as much as you like) telling
me what if anything you think you learned from the assignment, and what if anything you found
found interesting, difficult, or otherwise noteworthy. For programming assignments, it should go
in the body of the e-mail or in a plain-text file essay.txt (no word-processor files please).

