
CSCI 3323 September 11, 2020

Slide 1

Administrivia

• The calendar date brings back memories. History to y’all; not just that for me!

• Homework 1 posted; due a week from Monday. Some written problems and a

programming problem. Programming problem will only work on something

UNIX-like. So . . .

• I’m still working on suggestions for getting a UNIX-like environment on a

Windows computer. Will let you know by e-mail. A fallback is just to use the

Linux virtual desktop.

• Reading quiz over Chapter 1 coming soon. Also I’ll let you know by e-mail.

• If you have a question, pause the video and make a note of it, and then put it

in your minute essay.

Slide 2

System Calls

• Recall that some things can/should only be done by O/S (e.g., I/O), and

hardware can help enforce that.

• But application programs need to be able to request these services. How can

we make this work? System calls . . .

1

CSCI 3323 September 11, 2020

Slide 3

System Calls — Mechanism

• Library routine (running in user mode) sets up parameters and issues TRAP

instruction or equivalent. A key parameter says which system call is being

made (to create a process, open a file, etc.).

• TRAP instruction switches to kernel mode and transfers control to a fixed

address.

• At that address is code for “handler” that uses parameters set up by library

routine to figure out which system call is being invoked and call appropriate

code.

• When processing of system call is finished, control returns to calling program

— if appropriate. (What are other possibilities? Consider situations involving

waiting, errors.) Return to calling program also switches back to user mode.

Slide 4

Example: System Calls in MIPS

• MIPS instruction set includes syscall instruction that generate a

system-call exception. MIPS interrupts/exceptions use special-purpose

registers to hold type of exception and address of instruction causing

exception.

Before issuing syscall, program puts value indicating which service it

wants in register $v0. Parameters for system call are in other registers (can

be different ones for different calls).

• Interrupt handler for system calls looks at $v0 to figure out what service is

requested, other registers for other parameters.

• When done, it uses rfe instruction to restore calling program’s environment,

then returns to caller using value from EPC register.

2

CSCI 3323 September 11, 2020

Slide 5

Example: System Calls in MIPS/SPIM

• SPIM simulator — a primitive O/S! — defines a short list of system calls.

Example code fragment:

la $a0, hello

li $v0, 4 # "print string" syscall

syscall

....

.data

hello: .asciiz "hello, world!\n";

Slide 6

System Calls — Services Provided

• Typical services provided include creating processes, creating files and

directories, etc., etc. — details depend on (and in some ways define, from

application programmer’s perspective) operating system.

• Examples discussed in textbook:

– POSIX (Portable Operating System Interface (for UNIX)) — about 100

calls.

– Win32 API (Windows 32-bit Application Program Interface) — thousands

of calls.

Worth noting that the actual number of system calls is likely smaller —

interface may contain function calls that are implemented completely in user

space (no TRAP to kernel space).

3

CSCI 3323 September 11, 2020

Slide 7

Command Shells

• History — early batch systems had to interpret “control cards”; modern

equivalent is to interpret “commands” (usually interactive).

• Not technically part of O/S, but important and related.

• Typical shell functionality:

– Invocation of programs (optionally in background).

– Input/output redirection.

– Program-to-program connections (pipes).

– “Wildcard” capability.

– Scripting capability.

• Examples — MS-DOS command.com, Cygwin under Windows; UNIX sh,

bash, csh, tcsh, ksh, zsh, . . .

Slide 8

Homework 1 Programming Problem

• The idea is to write a very simple shell based on the sort-of-pseudocode in

the textbook, using fork and execve system calls. (See Figure 1-19.)

Note that the shell starts a new process for each command. Why do you think

it does that? (Think about what happens if the command crashes.)

• To do this, you have to solve a couple of problems:

– Figure out how to use system-call library functions fork and execve.

Overview on next slide; details in man pages.

– Deal with string processing in C (or C++). (But I’m supplying starter code

that does most of this.)

4

CSCI 3323 September 11, 2020

Slide 9

Homework 1 Programming Problem, Continued

• fork() function creates and starts a new process. Both original (“parent”)

and new (“child”) processes execute the same program, continuing at

whatever follows call to fork(). Return value from function says which

process is which.

• execve() function discards current program and loads and starts a new

one. If it fails, execution continues with whatever follows; otherwise whatever

follows is ignored!

Slide 10

Sidebar: C/C++ Programming Advice

• I strongly recommend always compiling with flags to get extra warnings.

There are lots of them, but you can get a lot of mileage just from -Wall.

Add -pedantic to flag nonstandard usage.

Warnings are often a sign that something is wrong. Only rarely should they be

ignored! Sometimes the problem is a missing #include. man pages tell

you if you need one.

• If you want to write “new” C (including C++-style comments), you may need to

add -std=c99.

5

CSCI 3323 September 11, 2020

Slide 11

Sidebar: C/C++ Programming Advice, Continued

• If typing all of these gets tedious, consider using a simple makefile: Create a

file called Makefile containing the following (the first line for C, the second

for C++):

CFLAGS = -Wall

CXXFLAGS = -Wall

and then compile hello.c to hello by typing make hello, or

similarly for hello.cpp.

Slide 12

Minute Essay

• Questions?

6

