CSCI 3323 September 11, 2020

Administrivia

e The calendar date brings back memories. History to y’all; not just that for me!

o Homework 1 posted; due a week from Monday. Some written problems and a
programming problem. Programming problem will only work on something
UNIX-like. So ...

Slide 1 e |I'm still working on suggestions for getting a UNIX-like environment on a

Windows computer. Will let you know by e-mail. A fallback is just to use the
Linux virtual desktop.

e Reading quiz over Chapter 1 coming soon. Also I'll let you know by e-mail.

e |f you have a question, pause the video and make a note of it, and then put it

in your minute essay.

System Calls

e Recall that some things can/should only be done by O/S (e.g., I/0), and
hardware can help enforce that.

e But application programs need to be able to request these services. How can
we make this work? System calls ...

Slide 2

CSCI 3323 September 11, 2020

System Calls — Mechanism

e Library routine (running in user mode) sets up parameters and issues TRAP
instruction or equivalent. A key parameter says which system call is being

made (to create a process, open a file, etc.).

TRAP instruction switches to kernel mode and transfers control to a fixed

Slide 3 address.

At that address is code for “handler” that uses parameters set up by library

routine to figure out which system call is being invoked and call appropriate

code.

o When processing of system call is finished, control returns to calling program
— if appropriate. (What are other possibilities? Consider situations involving
waiting, errors.) Return to calling program also switches back to user mode.

Example: System Calls in MIPS

o MIPS instruction set includes sy scall instruction that generate a
system-call exception. MIPS interrupts/exceptions use special-purpose
registers to hold type of exception and address of instruction causing
exception.

Slide 4 Before issuing syscall, program puts value indicating which service it

wants in register $v 0. Parameters for system call are in other registers (can

be different ones for different calls).

e Interrupt handler for system calls looks at $v 0 to figure out what service is

requested, other registers for other parameters.

o When done, it uses r fe instruction to restore calling program’s environment,

then returns to caller using value from EPC register.

\. J

CSCI 3323

September 11, 2020

Slide 5

Example: System Calls in MIPS/SPIM

o SPIM simulator — a primitive O/S! — defines a short list of system calls.
Example code fragment:
la $a0, hello

1i $v0, 4 # "print string" syscall
syscall

.data

hello: .asciiz "hello, world!\n";

Slide 6

System Calls — Services Provided

e Typical services provided include creating processes, creating files and
directories, etc., etc. — details depend on (and in some ways define, from
application programmer’s perspective) operating system.

o Examples discussed in textbook:

— POSIX (Portable Operating System Interface (for UNIX)) — about 100
calls.

— Win32 API (Windows 32-bit Application Program Interface) — thousands
of calls.
Worth noting that the actual number of system calls is likely smaller —

interface may contain function calls that are implemented completely in user
space (no TRAP to kernel space).

CSCI 3323 September 11, 2020

Command Shells

e History — early batch systems had to interpret “control cards”; modern
equivalent is to interpret “commands” (usually interactive).

e Not technically part of O/S, but important and related.

e Typical shell functionality:

Slide 7 . . .
: — Invocation of programs (optionally in background).
— Input/output redirection.
— Program-to-program connections (pipes).
— “Wildcard” capability.
— Scripting capability.
o Examples — MS-DOS command . com, Cygwin under Windows; UNIX sh,
bash, csh, tcsh, ksh, zsh, ...
Homework 1 Programming Problem
e The idea is to write a very simple shell based on the sort-of-pseudocode in
the textbook, using fork and execve system calls. (See Figure 1-19.)
Note that the shell starts a new process for each command. Why do you think
it does that? (Think about what happens if the command crashes.)
Slide 8 e To do this, you have to solve a couple of problems:

— Figure out how to use system-call library functions fork and execve.
Overview on next slide; details in man pages.

— Deal with string processing in C (or C++). (But I'm supplying starter code
that does most of this.)

CSCI 3323 September 11, 2020

Homework 1 Programming Problem, Continued

e fork () function creates and starts a new process. Both original (“parent”)
and new (“child”) processes execute the same program, continuing at
whatever follows call to fork (). Return value from function says which

process is which.

Slide 9 e execve () function discards current program and loads and starts a new
one. If it fails, execution continues with whatever follows; otherwise whatever

follows is ignored!

Sidebar: C/C++ Programming Advice

e | strongly recommend always compiling with flags to get extra warnings.
There are lots of them, but you can get a lot of mileage just from —Wall.
Add —pedant ic to flag nonstandard usage.

Warnings are often a sign that something is wrong. Only rarely should they be
ignored! Sometimes the problem is a missing # include. man pages tell

Slide 10
you if you need one.

e |f you want to write “new” C (including C++-style comments), you may need to

add —std=c99.

CSCI 3323 September 11, 2020

Sidebar: C/C++ Programming Advice, Continued
e |f typing all of these gets tedious, consider using a simple makefile: Create a
file called Make f1i1e containing the following (the first line for C, the second
for C++):
CFLAGS = -Wall
Slide 11 CXXFLAGS = -Wall
and then compile hello.ctohello bytypingmake hello,or
similarly forhello. cpp.
e Questions?
Slide 12

