
CSCI 3323 September 23, 2020

Slide 1

Administrivia

• Reminder: If you haven’t watched the not-live recorded lecture for 9/16,

please do.

• Reminder: Homework 1 (two parts) and Reading Quiz 1 were due Monday.

(Most people have turned them in, but not all. Let me know if you’re having

trouble.)

• Homework 2 and Reading Quiz 2 coming soon. I will send e-mail.

• I plan to record a second lecture for this week, to make up for Monday,

available Friday. Again, e-mail.

Slide 2

Minute Essay From Last Lecture

• Almost no one remembered anything about loop invariants from Discrete.

“Hm!” ? I find this a very powerful idea, though more as an informal way of

thinking about code.

1



CSCI 3323 September 23, 2020

Slide 3

Classical IPC Problems — Mutual Exclusion
(Review/Recap)

• In many situations, we want only one process at a time to have access to

some shared resource.

• Generic/abstract version: Multiple processes, each with a “critical region”

(“critical section”):

while (true) {

do_cr(); // must be "finite"

do_non_cr(); // need not be "finite"

}

• Goal is to add something to this code such that criteria on next page hold.

Slide 4

Mutual Exclusion — Criteria

• Generic/abstract code again:

while (true) {

do_cr(); // must be "finite"

do_non_cr(); // need not be "finite"

}

• Goal is to add something to this code such that:

1. No more than one process at a time can be “in its critical region”.

2. No process not in its critical region can block another process.

3. No process waits forever to enter its critical region.

4. No assumptions are made about how many CPUs, their speeds.

2



CSCI 3323 September 23, 2020

Slide 5

Proposed Solution — Peterson’s Algorithm

• Shared variables:

int turn = 0; // "who tried most recently"

bool interested0 = false, interested1 = false;

Pseudocode for process p0:
while (true) {

interested0 = true;

turn = 0;

while ((turn == 0)

&& interested1);

do_cr();

interested0 = false;

do_non_cr();

}

Pseudocode for process p1:
while (true) {

interested1 = true;

turn = 1;

while ((turn == 1)

&& interested0);

do_cr();

interested1 = false;

do_non_cr();

}

• Does it work? Yes . . .

Slide 6

Peterson’s Algorithm, Continued

• Intuitive idea: p0 can only start do cr() if either p1 isn’t interested, or p1 is

interested but it’s p0’s turn; turn “breaks ties”.

• Semi-formal proof using invariants is a bit tricky. Proposed invariant has two

parts:

– “If p0 is in its critical region, interested0 is true and either

interested1 is false or turn is 1”; similarly for p1.

– “turn is either 0 or 1.”

• If we can show that, first requirement (no more than one process in critical

region) is true. Other requirements are too.

Second part is clearly okay, but for the first, a fiddly detail — the invariant can

be false if p0 is in its critical region when p1 executes the lines

interested1 = true; turn = 1;. So revise a bit . . .

3



CSCI 3323 September 23, 2020

Slide 7

Peterson’s Algorithm, Continued

• Shared variables:

int turn = 0; // "who tried most recently"

bool interested0 = false, interested1 = false;

Pseudocode for process p0:
while (true) {

interested0 = true; // L1

turn = 0; // L2

while ((turn == 0)

&& interested1);

do_cr();

interested0 = false;

do_non_cr();

}

Pseudocode for process p1:
while (true) {

interested1 = true; // L1

turn = 1; // L2

while ((turn == 1)

&& interested0);

do_cr();

interested1 = false;

do_non_cr();

}

• Revised invariant (first part): “If p0 is in its critical region, interested0 is

true and one of the following is true: interested1 is false, turn is 1, or

p1 is between L1 and L2”, and similarly for p1. Ugly but (I claim) works . . .

Slide 8

Peterson’s Algorithm, Continued

• Revised invariant again: “If p0 is in its critical region, interested0 is true

and one of the following is true: interested1 is false, turn is 1, or p1

is between L1 and L2”, and similarly for p1. Invariant?

• True initially.

• Could change when either process enters its critical region. But this only

happens . . . when? So okay.

• Doesn’t change when eiher process leaves its critical region (somewhat

trivially).

• Changes to interesten — this is where the revision comes in; if the

other process is in its critical region then it’s a bit fiddly, but okay with revision.

• Changes to turn are okay.

• So okay!

4



CSCI 3323 September 23, 2020

Slide 9

Peterson’s Algorithm, Continued

• Requires essentially no hardware support (aside from “no two simultaneous

writes to memory location X” — fairly safe assumption as long as X is a single

“word”). Can be extended to more than two processes.

• But complicated and not very efficient because it “busy-waits”.

Slide 10

Sidebar: TSL Instruction

• A key problem in concurrent algorithms is the idea of “atomicity” (operations

guaranteed to execute without interference from another CPU/process).

Hardware can provide some help with this.

• E.g., “test and set lock” (TSL) instruction:

TSL registerX, lockVar

(1) copies lockVar to registerX and (2) sets lockVar to non-zero,

all as one atomic operation.

How to make this work is the hardware designers’ problem!

5



CSCI 3323 September 23, 2020

Slide 11

Proposed Solution Using TSL Instruction

• Shared variables:

int lock = 0;

Pseudocode for each process:
while (true) {

enter_cr();

do_cr();

leave_cr();

do_non_cr();

}

Assembly-language routines:
enter_cr:

TSL regX, lock

compare regX with 0

if not equal

jump to enter_cr

return

leave_cr:

store 0 in lock

return

• Does it work? Yes . . .

Slide 12

Solution Using TSL Instruction, Continued

• Proposed invariant: “lock is 0 exactly when no processes in their critical

regions, and nonzero exactly when one process in its critical region.” (“Exactly

when” here means “if and only if”.)

• If this invariant holds, that means first requirement is met. (Does it hold? Next

slide.) Others met too — well, except that it might be “unfair” (some process

waits forever).

• Is this a better solution? Simpler than Peterson’s algorithm, but still involves

busy-waiting. (Also depends on hardware features that might not be present,

but these days almost all hardware has something similar.)

6



CSCI 3323 September 23, 2020

Slide 13

Solution Using TSL Instruction, Continued

• Proposed invariant: “lock is 0 exactly when no processes in their critical

regions, and nonzero exactly when one process in its critical region.” (“Exactly

when” here means “if and only if”.)

• True initially.

• Could change when a process enters its critical region — but notice that only

happens when lock is 0.

• Also doesn’t change when a process leaves its critical region.

• So okay.

Slide 14

Mutual Exclusion Solutions So Far

• Solutions so far have some problems: inefficient, dependent on whether

scheduler/etc. guarantees fairness.

(It’s worth noting too that for the simple ones needing no special hardware —

e.g., Peterson’s algorithm — whether they work on real hardware depends on

whether values “written” to memory are actually written right away or cached.

Surprisingly difficult to guarantee that!)

• Also, they’re very low-level, so might be hard to use for more complicated

problems.

• So, people have proposed various “synchronization mechanisms” . . .

7



CSCI 3323 September 23, 2020

Slide 15

Synchronization Mechanisms — Overview

• Synchronization using only shared variables seems to be tedious and

inefficient.

• “Synchronization mechanisms” are more-abstract ways of coordinating what

processes do. A key point is providing something that potentially makes a

process wait.

Slide 16

Semaphores

• History — 1965 paper by Dijkstra (possibly earlier work by Iverson, or so says

a former faculty member who knows of Iverson through his work on APL/J).

• Idea — define semaphore ADT:

– “Value” — non-negative integer.

– Two operations, both atomic:

∗ up (V) — add one to value.

∗ down (P) — block until value is nonzero, then subtract one.

• Ignoring for now how to implement this — is it useful?

8



CSCI 3323 September 23, 2020

Slide 17

Mutual Exclusion Using Semaphores

• Shared variables:

semaphore S(1);

Pseudocode for each process:

while (true) {

down(S);

do_cr();

up(S);

do_non_cr();

}

• Proposed invariant: “S has value 1 exactly when no process in its critical

region, 0 exactly when one process in its critical region, and never has values

other than 0 or 1.”

Slide 18

Mutual Exclusion Using Semaphores, Continued

• Proposed invariant again: “S has value 1 exactly when no process in its

critical region, 0 exactly when one process in its critical region, and never has

values other than 0 or 1.”

• True initially.

• Could change when a process enters its critical region — but this is

essentially exactly when a down(S) completes, so okay.

• Could change when a process leaves its critical region — but this is

essentially exactly when an up(S) completes, so okay.

9



CSCI 3323 September 23, 2020

Slide 19

Minute Essay

• Does what I’m saying about using invariants to reason about concurrent

algorithms make sense to you?

10


