
CSCI 3323 October 5, 2020

Slide 1

Administrivia

• Reminder: Reading Quiz 2 due Wednesday.

• Homeworks 2a and 2b posted. Due a week from Wednesday. Kind of a big

assignment, and my guess is that many of you have exams this week, but

maybe by next Wednesday?

• I want to do an exam after we finish Chapter 2 (and a quick look at

Chapter 6), and we’re close. Week after next?

Before then, one more short homework and another reading quiz.

• The bad news: We’re behind schedule, yes. The not-so-bad news: Typically

the last few lectures in the semester are time-fillers. So I’m confident we have

time to cover the topics I think are important.

Slide 2

Minute Essay From Last Lecture

• (Review “answer” slide.)

• A few people got the point, others didn’t.

Might be worth mentioning that of course(?) at any point in the program you

can’t have completed more downs than the number of completed ups, plus

the semaphore’s initial value, but if there’s no time when you called down on

a semaphore with value 0 then maybe you didn’t need one? (As with so many

things, too much attention to details takes some of the fun out of the alleged

joke?)

• “Alleged” — because often students are not amused. Ah well! (And why do

we groan at puns? I do, and I like them!)

1



CSCI 3323 October 5, 2020

Slide 3

Classical IPC Problems — Review

• Literature (and textbooks) on operating systems talk about “classical

problems” of interprocess communication.

• Idea — each is an abstract/simplified version of problems O/S designers

actually need to solve. Also a good way to compare ease-of-use of various

synchronization mechanisms.

• Examples so far — mutual exclusion, bounded buffer.

• Other examples sometimes described in silly anthropomorphic terms, but

underlying problem is a simplified version of something “real”.

Slide 4

Dining Philosophers Problem

• Scenario (originally proposed by Dijkstra, 1972):

– Five philosophers sitting around a table, each alternating between thinking

and eating.

– Between every pair of philosophers, a fork; philosopher must have two

forks to eat.

– So, neighbors can’t eat at the same time, but non-neighbors can.

• Why is this interesting or important? It’s a simple example of something more

complex than mutual exclusion — multiple shared resources (forks),

processes (philosophers) must obtain two resources together. (Why five?

smallest number that’s “interesting”.)

2



CSCI 3323 October 5, 2020

Slide 5

Dining Philosophers — Naive Solution

• Naive approach — we have five mutual-exclusion problems to solve (one per

fork), so just solve them.

• Does this work? No — deadlock possible.

Slide 6

Dining Philosophers — Simple Solution

• Another approach — just use a solution to the mutual exclusion problem to let

only one philosopher at a time eat.

• Does this work? Well, it “works” w.r.t. meeting safety condition and no

deadlock, but it’s too restrictive.

3



CSCI 3323 October 5, 2020

Slide 7

Dining Philosophers — Dijkstra Solution

• Another approach — use shared variables to track state of philosophers and

semaphores to synchronize.

• I.e., variables are

– Array of five state variables (states[5]), possible values

thinking, hungry, eating. Initially all thinking.

– Semaphore mutex, initial value 1, to enforce one-at-a-time access to

states.

– Array of five semaphores self[5], initial values 0, to allow us to make

philosophers wait.

• And then the code is somewhat complex . . .

Slide 8

Dining Philosophers — Code

• Shared variables as on previous slide.

Pseudocode for philosopher i:
while (true) {

think();

down(mutex);

state[i] = hungry;

test(i);

up(mutex);

down(self[i]);

eat();

down(mutex);

state[i] = thinking;

test(right(i));

test(left(i));

up(mutex);

}

Pseudocode for function:
void test(i)

{

if ((state[left(i)] != eating) &&

(state[right(i)] != eating) &&

(state[i] == hungry))

{

state[i] = eating;

up(self[i]);

}

}

4



CSCI 3323 October 5, 2020

Slide 9

Dining Philosophers — Dijkstra Solution Works?

• Could there be problems with access to shared state variables?

• Do we guarantee that neighbors don’t eat at the same time?

• Do we allow non-neighbors to eat at the same time?

• Could we deadlock?

• Does a hungry philosopher always get to eat eventually?

Slide 10

Dining Philosophers — Chandy/Misra Solution

• Original solution allows for scenarios in which one philosopher “starves”

because its neighbors alternate eating while it remains hungry.

• Briefly, we could improve this by maintaining a notion of “priority” between

neighbors, and only allow a philosopher to eat if (1) neither neighbor is eating,

and (2) it doesn’t have a higher-priority neighbor that’s hungry. After a

philosopher eats, it lowers its priority relative to its neighbors.

5



CSCI 3323 October 5, 2020

Slide 11

Other Classical Problems

• Readers/writers (in textbook).

• Sleeping barber, drinking philosophers, . . .

• Advice — if you ever have to solve problems like this “for real”, read the

literature . . .

Slide 12

Homework 2

• Several written problems.

• Programming problem for which you’ll need a UNIX/Linux-like environment.

(Review briefly?)

6



CSCI 3323 October 5, 2020

Slide 13

Minute Essay

• Any questions about IPC (synchronization, classical problems) before we

move on? Remaining topics to cover before the planned exam: CPU

scheduling, deadlocks.

7


