CSCI 3323 October 16, 2020

Administrivia

o (By e-mail — plans for upcoming reading quiz(zes), homework, exam.)

Slide 1

4 One More IPC Problem — Readers/Writers

e Scenario is that you have multiple processes wanting to access a shared file,
some to read only but some to modify (write). Clearly(?) okay to allow
multiple concurrent readers, but writers need exclusive access — i.e., there
can be at most one writer at a time, and reading and writing at the same time

is not allowed.

Slide 2
(Right, a problem that immediately sounds useful!)

e Clearly need to employ one of the synchronization techniques

discussed ... Textbook shows one using semaphores, so look at that.




CSCI 3323 October 16, 2020

4 )

Readers / Writers — Solution

o We probably need at least two semaphores, one that will block readers when
there’s a writer active, and one that will block writers when there’s either a
writer or at least one reader.

e Seems like we also need some way to keep track of how many readers are
active, and it's not clear how to do that using only semaphores. For the

Slide 3 . . .
bounded-buffer problem we could use semaphores to give the right behavior
without keeping an explicit count, but not clear how to do that here.

e So instead solution involves a shared integer count of readers (which we’ll call
rc) and two semaphores:
— mutex, which will control access to rc and also(!) make readers wait if
there’s a writer active. Initial value is 1.
— db (short for “database” — a common use case), to make everyone else
k wait if there’s a writer active. Initial value is 1. )
Readers / Writers — Code
e Shared variables as on previous slide.
Pseudocode for reader: Pseudocode for writer:
while (true) { while (true) {
down (mutex) ; /% generate data */
rc += 1; down (db) ;
if (rc == 1) down(db); /+ write file data */
up (mutex) ; up (db) ;
- /* read file =/ }
Sllde 4 down (mutex) :
rc -= 1;
if (rc == 0) up(db);

up (mutex)
/+ use file data %/




CSCI 3323

October 16, 2020

Slide 5

Readers / Writers — Why It Works

e (Wasn’'t immediately obvious to me that it did — something about potentially
blocking on db while holding something that looks like a mutex lock! But

thinking carefully .. .)
o | like to think in terms of invariants — part of which is “what is this variable
supposed to mean, and does it always mean that?”

(Aside: | find this a very useful approach in general. To me it feels like a way
of thinking about programs that may not occur to beginners but helps a lot.)

Slide 6

Readers / Writers — Why It Works, Continued

e rC can have any non-negative value; it represents a count of active readers.

e mutex can only have values 0 and 1. A value of 1 means there are no
writers active and no readers actively trying to update rc. A value of 0
means either another reader is updating rc or another reader is waiting

because there’s a writer active.

e db can only have values 0 and 1. A value of 1 means there are no writers
active, no readers active, andn no readers waiting because there’s a writer
active. A value of 0 means either there’s one writer active or there’s a reader
active or there’s a reader waiting because a writer is active.

e Proceeding informally, these do seem like invariants? Equally important, all

possibilities meet the problem spec.




CSCI 3323 October 16, 2020

4 )

Readers / Writers — Potential Drawback

e A weakness of this approach is that it in effect gives readers high priority than

writers — i.e., writers can wait forever.

e Fixable; the textbook gives a reference for a possibly-better solution, and it
seems not hard to find them on the Web.

Slide 7

e Questions?

Slide 8




