
CSCI 3323 October 16, 2020

Slide 1

Administrivia

• (By e-mail — plans for upcoming reading quiz(zes), homework, exam.)

Slide 2

One More IPC Problem — Readers/Writers

• Scenario is that you have multiple processes wanting to access a shared file,

some to read only but some to modify (write). Clearly(?) okay to allow

multiple concurrent readers, but writers need exclusive access — i.e., there

can be at most one writer at a time, and reading and writing at the same time

is not allowed.

(Right, a problem that immediately sounds useful!)

• Clearly need to employ one of the synchronization techniques

discussed . . . Textbook shows one using semaphores, so look at that.

1



CSCI 3323 October 16, 2020

Slide 3

Readers / Writers — Solution

• We probably need at least two semaphores, one that will block readers when

there’s a writer active, and one that will block writers when there’s either a

writer or at least one reader.

• Seems like we also need some way to keep track of how many readers are

active, and it’s not clear how to do that using only semaphores. For the

bounded-buffer problem we could use semaphores to give the right behavior

without keeping an explicit count, but not clear how to do that here.

• So instead solution involves a shared integer count of readers (which we’ll call

rc) and two semaphores:

– mutex, which will control access to rc and also(!) make readers wait if

there’s a writer active. Initial value is 1.

– db (short for “database” — a common use case), to make everyone else

wait if there’s a writer active. Initial value is 1.

Slide 4

Readers / Writers — Code

• Shared variables as on previous slide.

Pseudocode for reader:
while (true) {

down(mutex);

rc += 1;

if (rc == 1) down(db);

up(mutex);

/* read file */

down(mutex):

rc -= 1;

if (rc == 0) up(db);

up(mutex)

/* use file data */

}

Pseudocode for writer:
while (true) {

/* generate data */

down(db);

/* write file data */

up(db);

}

2



CSCI 3323 October 16, 2020

Slide 5

Readers / Writers — Why It Works

• (Wasn’t immediately obvious to me that it did — something about potentially

blocking on db while holding something that looks like a mutex lock! But

thinking carefully . . . )

• I like to think in terms of invariants — part of which is “what is this variable

supposed to mean, and does it always mean that?”

(Aside: I find this a very useful approach in general. To me it feels like a way

of thinking about programs that may not occur to beginners but helps a lot.)

Slide 6

Readers / Writers — Why It Works, Continued

• rc can have any non-negative value; it represents a count of active readers.

• mutex can only have values 0 and 1. A value of 1 means there are no

writers active and no readers actively trying to update rc. A value of 0

means either another reader is updating rc or another reader is waiting

because there’s a writer active.

• db can only have values 0 and 1. A value of 1 means there are no writers

active, no readers active, andn no readers waiting because there’s a writer

active. A value of 0 means either there’s one writer active or there’s a reader

active or there’s a reader waiting because a writer is active.

• Proceeding informally, these do seem like invariants? Equally important, all

possibilities meet the problem spec.

3



CSCI 3323 October 16, 2020

Slide 7

Readers / Writers — Potential Drawback

• A weakness of this approach is that it in effect gives readers high priority than

writers — i.e., writers can wait forever.

• Fixable; the textbook gives a reference for a possibly-better solution, and it

seems not hard to find them on the Web.

Slide 8

Minute Essay

• Questions?

4


