
CSCI 3323 November 11, 2020

Slide 1

Administrivia

• Reading quiz(zes) on Chapter 3 coming soon.

• I’m still hoping/planning to make up an extra-credit assignment on

concurrency, but it’s taking more time than I thought.

• Not a lot of class weeks left! so I’m going to try to stick to essentials so we

can address major stuff. Plan is to address important and relevant material in

Chapter 3 and high spots of Chapters 4 and 5.

Slide 2

Memory Management — Overview

• One job of operating system is to “manage memory” — assign sections of

main memory to processes, keep track of who has what, protect processes’

memory from other processes.

• As with CPU scheduling, we’ll look at several schemes, starting with the very

simple. For each scheme, think about how well it solves the problem, how it

compares to others.

• As with processes, tradeoff between simplicity and providing a nice

abstraction to user programs.

1



CSCI 3323 November 11, 2020

Slide 3

Simple Schemes — No Abstraction

• Memory (a.k.a. “RAM”) can be thought of as a very long list of numbered cells

(usually bytes). (Somewhat simplified view but good enough for our

purposes.)

• Simplest schemes for managing it don’t try to hide that view. (Names for

these come from older edition of Tanenbaum’s book.)

Going through these quickly, mostly for historical perspective . . .

For each consider tradeoffs — complexity versus flexibility, efficient use of

memory.

Slide 4

Monoprogramming

• Idea — only one user program/process at a time, stays resident until finished.

Only decision to make is how much memory to devote to O/S itself, where to

put it.

(Figure 3-1 in textbook.)

• Very simple (good) but very restrictive.

• Used in very early mainframes, MS-DOS; still used in some embedded

systems.

2



CSCI 3323 November 11, 2020

Slide 5

Multiprogramming With Fixed Partitions

• Idea — partition memory into fixed-size “partitions” (maybe different sizes),

one for each process. Possibly also add the ability to “swap” programs (later).

• Limits “degree of multiprogramming” (how many processes can run

concurrently).

• Probably necessitates “admissions scheduling” (some way of controlling

which processes even get to start) — either one input queue per partition, or

one combined queue.

If one combined queue, how to choose from it when a partition becomes

available? first job that fits? largest job that fits? etc.

• Fairly simple but pretty restrictive.

• Used in early mainframes.

Slide 6

Multiprogramming With Variable Partitions

• Idea — separate memory into partitions as before, but allow them to vary in

size and number. (Figure 3-4 in textbook, sort of.)

I.e., “contiguous allocation” scheme.

• Like previous scheme, necessitates admissions scheduling.

• Requires that we keep track of locations and sizes of processes’ partitions,

free space. Note potential for memory fragmentation.

• Also fairly simple but restrictive.

• Used in early mainframes.

3



CSCI 3323 November 11, 2020

Slide 7

Multiprogramming With Variable Partitions, Continued

• Another implementation issue — how to decide, when starting a process,

which of the available free chunks to assign.

• Several strategies possible (more in textbook if interested, but choices include

first bit, best fit, worst fit).

Slide 8

Multiprogramming with Fixed/Variable Partitions —
Recap

• Comparing the two schemes:

– Similar admission scheduling issues.

– Both pretty simple and pretty restrictive, though variable partitions are less

so. Neither makes great use of memory.

• Either could be adequate for a simple batch system, maybe with the addition

of swapping.

4



CSCI 3323 November 11, 2020

Slide 9

Swapping

• Idea — move processes into / out of main memory (when not in main

memory, save on disk).

(Note that programs do have to be in memory to run!)

• Addresses some problems (what if a process blocks for an extended time?),

could also provide a way to “fix” fragmentation.

• Implies another level of scheduling (what to swap in/out).

• Less simple but more flexible.

Slide 10

Sidebar: Three-Level Scheduling

• Basic idea — break up problem of scheduling (batch) work into three parts:

– Admissions scheduling — choose from input queue which jobs to “let into

the system” (create processes for).

– Memory scheduling — choose from among processes in system which to

keep in memory, which to “swap out” to disk.

– CPU scheduling — choose from among processes in memory which to

actually run.

• Points to consider:

– Are there advantages to limiting how many processes, how many in

memory? What criteria could we use?

– Are there advantages to the explicit three-level scheme?

– Would this (or a variant) work for interactive systems?

– Do all three schedulers have to be efficient?

5



CSCI 3323 November 11, 2020

Slide 11

Sidebar: Program Relocation

• Recall(?) that for most systems memory can be thought of one big

one-dimensional space. Hardware references to memory are via an index into

this space (“absolute address”).

• At the machine-instruction level, load/store references to memory use an

absolute address.

• You may recall from CSCI 2321 that in the MIPS architecture this address can

be computed based on contents of a register or on the program counter, and

that doesn’t change based on where the program resides in memory. But for

some instructions the address comes from the actual instruction (i.e., it’s an

absolute address). Fairly typical.

Slide 12

Program Relocation, Continued

• You may also recall from the discussion of assembling and linking that

generating these absolute addresses is a bit complicated, since they can’t be

known at least until link time. But even then, they depend on where the

program will reside in memory.

• In the very early days, all programs loaded at address 0, so no problem. With

monoprogramming, too, all programs reside at the same address, so no

problem. (SPIM works that way.)

• What happens, though, if you want to have multiple programs in memory?

compilers/assemblers can’t generate correct absolute addresses.

• This is the “relocation problem”. What to do?

6



CSCI 3323 November 11, 2020

Slide 13

Program Relocation, Continued

• One solution: Generate, as part of the executable, a list of locations where

there’s an absolute address, and modify it as the program is loaded into

memory. (This won’t work well if we include swapping.)

• One solution to the memory-protection problem — storage-protection keys

(IBM 360, an early mainframe).

• Better solution involves translating addresses “on the fly”. Also helps with

memory protection (making sure processes don’t have access to each other’s

data, at least without explicit sharing).

Slide 14

Sidebar: The “Address Space” Abstraction

• Basic idea somewhat analogous to process abstraction, in which each

process has its own simulated CPU. Here, each process has its own

simulated memory.

• As with processes, implementing this abstraction is part of what an operating

system can/should do.

• Usually, though, O/S needs help from hardware . . .

7



CSCI 3323 November 11, 2020

Slide 15

Dynamic Address Translation

• Underlying idea — separate program addresses (relative to start of program’s

“address space”) from physical addresses (memory locations), and map

program addresses to physical addresses. Also try to identify out-of-bounds

addresses.

• Only practical way to implement — hardware “memory management unit” that

logically sits between the CPU and memory. (Figure 3-8 in text.)

Simplifying, CPU references program addresses, MMU turns them into

physical addresses, generates interrupt if invalid.

Slide 16

A Simple MMU

• Idea — map each process’s address space to a contiguous chunk of real

memory, based on base and limit addresses (B and L):

Program address p maps to memory location B + p.

If B + p > L, invalid (out of bounds).

If B and L are different for each process — solves both problems.

• Turn this into hardware (MMU) by using base and limit registers.

• Solves both the relocation and protection problems.

• Simple but restrictive (each process’s memory must be one contiguous

chunk).

• Used in some early mainframes and PCs.

8



CSCI 3323 November 11, 2020

Slide 17

Memory Management with Contiguous Allocation

• Simplest MMU (just described) uses two registers, base and limit. More or

less implies that each process can have only one contiguous chunk of

memory. (Note here the interaction between hardware design and O/S

design.)

• Key issues here are keeping track of what space is used by what, and

deciding how to assign memory to processes.

Slide 18

Simple Memory Management — Recap

• Contiguous-allocation schemes are simple to understand, implement.

• But not very flexible — each process’s memory must be contiguous, swapping

is all-or-nothing.

• Can we do better? yes, by relaxing one or both of those requirements —

“paging”.

9



CSCI 3323 November 11, 2020

Slide 19

Pause

• (Pause to try to combat Zoom fatigue.)

Slide 20

Paging — Overview

• Idea — divide both address spaces and memory into fixed-size blocks

(“pages” and “page frames”), allow non-contiguous allocation.

• Seems like this would be more flexible and make better use of memory, but

would be much more complex? Yes . . .

10



CSCI 3323 November 11, 2020

Slide 21

Paging — Mapping Program to Physical Addresses

• One consequence — mapping from program addresses to physical

addresses is much more complicated.

• How? “page table” for each process maps pages of address space to page

frames; use this to calculate physical address from program address.

(Are there page sizes for which this is easier?)

• As with base/limit scheme, makes more sense to implement this in MMU.

(Note again interaction between hardware design and O/S design.)

• Could let page table size vary, but easier to make them all the same (i.e., each

process has the same size address space), have a bit to indicate valid/invalid

for each entry. Attempt to access page with invalid bit — “page fault”.

(Figures 3-9, 3-10 in textbook.)

Slide 22

Paging and Virtual Memory

• Idea — extend this scheme to provide “virtual memory” — keep some pages

on disk. Allows us to pretend we have more memory than we really do. (Not

as important these days as previously, but still, sometimes it seems like

however much you have of a resource it isn’t always enough?)

• (Compare to swapping.)

11



CSCI 3323 November 11, 2020

Slide 23

Paging and Memory Protection

• This scheme also provides memory protection. (How?)

• We could also use it to allow processes to share memory. (How?)

Slide 24

Minute Essay

• To do its job, a MMU that uses paging must have access to current process’s

page table. The textbook mentions two simple schemes for doing this:

– Keep entire table in (processor) registers.

– Keep table in memory and have a particular processor register point to its

starting location.

• What advantages/disadvantages can you think of for each of these? (Think

about context switching between processes and also about how quickly MMU

will be able to translate each address.)

12



CSCI 3323 November 11, 2020

Slide 25

Minute Essay Answer

• First scheme almost surely makes for faster translations, but for a large page

table it will require a lot of registers, which even if feasible would make context

switches slow.

Second scheme won’t slow down context switches, but as stated it isn’t going

to make for fast translation.

13


