
CSCI 3323 November 16, 2020

Slide 1

Administrivia

• Reading quizzes and homework posted. Due week after holiday.

• One more round of quizzes and homeworks, but homeworks will be short.

• Final will be worth 150 points not 200. (Possibly even just 100?)

• Code examples added to course Web site, including synchronization

examples.

Slide 2

Page Replacement Algorithms — Recap

• If there are always free frames to bring in pages from disk, no need to make

decisions. Not always guaranteed, hence the need to choose.

• Many many ways to choose (no surprise!). Goal is to reduce number of page

faults. Often based on observation that recent past predicts near future —

notion of “working set”.

1



CSCI 3323 November 16, 2020

Slide 3

“Thrashing”

• Recall notion of a process’s “working set” — portion of its address space

currently in use.

• Q: What happens if the combined sizes of all active processes’ working sets

is too big for RAM?

• A: Pretty much what the sysadmins in my minute-essay story observed —

system will spend so much time paging it can’t do much else.

• Unlikely these days, but still possible! (I have a home system where Eclipse

seems to have this problem! Runs, but so slowly it’s not usable.)

Slide 4

Modeling Page Replacement Algorithms

• Intuitively obvious that more memory leads to fewer page faults, right? Not

always!

• Counterexample — “Belady’s anomaly”, sparked interest in modeling page

replacement algorithms.

• Modeling based on simplified version of reality — one process only, known

inputs. Can then record “reference string” of pages referenced.

• Given reference string, p.r.a., and number of page frames, we can calculate

number of page faults.

• How is this useful? can compare different algorithms, and also determine if a

given algorithm is a “stack algorithm” (more memory always means fewer

page faults).

2



CSCI 3323 November 16, 2020

Slide 5

Memory Protection, Revisited

• Paging provides one form of memory protection: If a given page in memory

isn’t mapped to some page in a process’s address space via its page table,

the process can’t access the page at all.

• But that’s “all or nothing”, and sometimes it would be useful to have more

control. Some MMU hardware supports page table entries that in addition to

R and M bits have . . .

• A “read-only” bit that’s what its name suggests. So for example there might be

a page that’s accessible (for reading) to all processes but is writeable only by

the O/S.

• An “execution allowed” bit that means it’s okay for the processor to fetch

instructions from this page. Very useful in defending against classic

buffer-overflow attacks (by not setting this bit for stack pages)!

Slide 6

Sidebar: “Smashing the Stack”

• Usual scheme for memory use within a process puts a stack at high

addresses, used in function calls (for parameters and return address) and

also for local variables. What happens if an attempt is made to store more

data in a local-variable array than will fit? (And in C this is all too easy, no?)

• Well, you know from CSCI 1120, no? Whatever is after the array is

overwritten . . .

3



CSCI 3323 November 16, 2020

Slide 7

“Smashing the Stack”, Continued

• . . . possibly including the function’s return address!

• This is an example of deliberately “smashing the stack”, and if the input is

very carefully crafted non-text, can be used to invoke attacker’s code. (Full

details in a very old paper referenced in “Useful links” on course Web site.

Uses x86 assembly language but I think is fairly readable even if you don’t

know that, and has a useful overview of various things relevant to this course.)

• Relies on being able to transfer control to any memory location user has

access to, including writable locations.

• Including “executable” bit in page table can help defeat this!

Slide 8

Paging — Operating System Versus MMU

• Some aspects of paging are dealt with by hardware (MMU) — translation of

program addresses to physical addresses, generation of page faults, setting

of R and M bits.

• Other aspects need O/S involvement. What/when?

4



CSCI 3323 November 16, 2020

Slide 9

Paging — Operating System Involvement

• Process creation requires setting up page tables and other data structures.

Process termination requires freeing them.

• Context switches require changing whatever the MMU uses to find the current

page table.

• And of course it’s the operating system that handles page faults!

• Some details . . .

Slide 10

Processing Memory References — MMU

• Does cache contain data for (virtual) address? If so, use it.

• If not, does TLB contain matching page table entry? If so, generate physical

address and send to memory bus.

• If not, does page table entry (in memory) say page is present? If so, put PTE

in TLB and continue as above.

• If not, generate page fault interrupt. Transfers control to interrupt handler.

5



CSCI 3323 November 16, 2020

Slide 11

Processing Memory References — Page Fault Interrupt

Handler

• Is page on disk or invalid (based on entry in process table, or other O/S data

structure)? If invalid, error — signal process (possibly terminate).

• Is there a free page frame? If not, choose one to steal (using page

replacement algorithm). If it needs to be saved to disk, start I/O to do that.

Update process table, PTE, etc., for “victim” process. Block process until I/O

done.

• Start I/O to bring needed page in from swap space (or zero out new page). If

I/O needed, block process until done.

• Update process table, etc., for process that caused the page fault, and restart

at instruction that generated page fault.

Slide 12

Processing Memory References — Details Still To Fill In

• How to keep track of pages on disk.

• How to keep track of which page frames are free.

• How to “schedule I/O” (but that’s later).

6



CSCI 3323 November 16, 2020

Slide 13

Keeping Track of Pages on Disk

• To implement virtual memory, need space on disk to keep pages not in main

memory. Reserve part of disk for this purpose (“swap space”); (conceptually)

divide it into page-sized chunks. How to keep track of which pages are

where? (Figure 3-28 in textbook.)

• One approach — give each process a contiguous piece of swap space.

Advantages/disadvantages?

• Another approach — assign chunks of swap space individually.

Advantages/disadvantages?

• Either way — each process must know where “its” pages are (via page table

and some other data structure), operating system must know where free slots

are (in memory and in swap space).

• (“Swap space”? Region on disk for holding out-of-memory pages. Can be flat

file or separate partition. A.k.a. “backing store”.)

Slide 14

Sharing Pages

• (Pause first to try to combat Zoom fatigue . . . )

• Shared pages can be useful, but can also present problems.

• Multiple processes running the same program is relatively easy (why?) but

has one potential downside (what?)

• UNIX fork system call is — interesting? — in this context. POSIX definition

says that child process’s address space is basically a copy of the parent’s

address space. What’s the easy-to-implement way to do this? What downside

does that have in current systems? Is there a way to reduce its impact? And

why duplicate in the first place?

7



CSCI 3323 November 16, 2020

Slide 15

Sharing Pages and fork

• Duplicating pages is easy but inefficient, especially if the child process is

going to call execve or something similar right away. Some systems use

“copy-on-write” to improve efficiency.

• Why did the people who designed UNIX require this duplication . . . Possibly

because it makes some things easy (such as setting up parent/child pipes)

and wasn’t very costly when designed. Windows’s system call for creating

processes takes a different approach. Maybe that’s better!

Slide 16

Sharing Pages, Continued

• One use for shared pages is multiple processes running the same program.

• What about sharing code at a level below whole programs (UNIX “shared

libraries”, Windows DLLs)?

8



CSCI 3323 November 16, 2020

Slide 17

Shared Libraries

• One attraction is somewhat obvious: If code for library functions (e.g.,

printf) is statically linked into every program that uses it, programs need

more memory — seems wasteful if processes can share one copy of code in

memory.

• Another attraction is that library code can be updated independently of

programs that use it. (But is there a downside to that?)

• How to make this happen . . .

Slide 18

Shared Libraries, Continued

• A good-and-bad aspect is that if the shared code is updated, all programs that

use it are affected.

• How to make this happen . . . At link time, programs get “stub” versions of

functions. References to real versions resolved at load time.

• Resolving references to shared code at load time — finer-grained version of

“relocation problem”, no? and fixable by making sure library contains only

“position-independent code”.

9



CSCI 3323 November 16, 2020

Slide 19

Libraries in Linux

• You may remember that (sometimes?) when you call math-library functions in

C you have to compile with the extra flag -lm? Actually a flag to the linker

ld. What it means . . .

• -lfoobar tells the linker to try to find functions in library file libfoobar.a

(for static linking) or libfoobar.so (for dynamic linking — “shared library”).

• Somewhat elaborate scheme for naming shared libraries allows multiple

versions to coexist. Programs that use them can reference latest version

(default) or specify particular version.

• References to functions in shared libraries resolved when program is loaded

into memory. Can also dynamically load functions at runtime. Both depend on

system being able to find shared libraries.

• Standard places to find library code, or you can explicitly specify alternate

places.

Slide 20

Libraries in Linux, Continued

• Creating a static library is relatively straightforward:

Compile code as usual and then use ar to combine object code files into

library.

• Creating a shared library is less so:

Compile code with flag to generate “position-independent code” (why? to

avoid “relocation problem” previously discussed).

Generate shared library and set up symbolic links following naming

conventions (in which a library has a “real name”, an “soname”, and a name

by which the linker normally finds it).

At runtime, must be sure system knows where to find library. Either

“hardcode” in executable or use environment variable LD LIBRARY PATH.

• (Example on course Web site.)

10



CSCI 3323 November 16, 2020

Slide 21

Memory-Mapped File I/O

• Worth mentioning here that some systems also provide a mechanism (e.g.,

via system calls) to allow “mapping” whole files into/from memory.

Reading/writing file is done using paging mechanism.

• If there’s enough memory, this could improve performance.

Slide 22

Memory-Mapped I/O in Linux

• System calls mmap, etc., allow whole or partial files to be “mapped” to

memory. Map can be private to process (essentially a copy of the file, with

changes not saved back) or shared among processes.

• Actual file reads happen only as locations are referenced, using more or less

the same mechanism as paging. Actual file writes happen only with shared

maps, either as pages are swapped in and out of memory or via msync

system call.

• (Example on course Web site.)

11



CSCI 3323 November 16, 2020

Slide 23

One More Memory Management Strategy —
Segmentation

• Idea — make program address “two-dimensional” / separate address space

into logical parts. So a virtual address has two parts, a segment and an offset.

• To map virtual address to memory location, need “segment table”, like page

table except each entry also requires a length/limit field. (So this is like a

cross between contiguous-allocation schemes and paging.)

Slide 24

Segmentation, Continued

• Benefits?

– Nice abstraction; nice way to share memory.

– Flexible use of memory — can have many areas that grow/shrink as

required, not just heap and stack — especially if we combine with paging.

• Drawbacks?

– External fragmentation possible (can offset by also paging).

– More complex.

– “Paging” in/out more complex — issues similar to with

contiguous-allocation.

12



CSCI 3323 November 16, 2020

Slide 25

Minute Essay

• That wraps up what I have to say about memory management. Anything you

really want to know about that I didn’t mention?

13


