
CSCI 3323 November 30, 2020

Slide 1

Administrivia

• (By e-mail.)

Slide 2

Files and Filesystems — Overview

• Very abstract view — requirements for long-term information storage are:

– Store large amounts of information.

– Have information survive past end of creating process.

– Allow concurrent access by multiple processes.

• Usual solution — “files” on disk and other external media, organized into “file

systems”.

1



CSCI 3323 November 30, 2020

Slide 3

Files and Filesystems — Overview, Continued

• In terms of the two views of an O/S:

– “Virtual machine” view — filesystem is important abstraction.

– “Resource manager” view — filesystem manages disk (and other I/O

device) resources.

• We’ll look first at the user view, then at implementation. (Briefly, but the key

take-away may be how much more there is here than you might have thought

about.)

Slide 4

File Abstraction

• Many, many aspects of “file abstraction” — name, type, ownership, etc., etc.

Most involve choices/tradeoffs.

• In the following slides, a quick tour of some of the major ones, with some of

the possible variations.

2



CSCI 3323 November 30, 2020

Slide 5

File Abstraction, Continued

• File names — always “text string”, but some choices: maximum length?

case-sensitive? ASCII or Unicode? “extension” required?

• File structure — how file appears to application program:

– Unstructured sequence of bytes — maximum flexibility, but maybe more

work for application.

– Sequence of fixed-length records — widely used in older systems, not

much any more.

– Tree (or other) structure supporting access by key.

Slide 6

File Abstraction, Continued

• File types — include “regular files”, also directories and (in some systems,

such as UNIX) “special files”. Regular files subdivide into:

– ASCII files — sequences of ASCII characters, generally separated into

lines by line-end character(s).

– Binary files — everything else, including executables, various archives, MS

Word format, etc., etc. Most have some structure, defined by the

expectations of the program(s) that work with them — applications for

some types, operating system for executables.

• File access — sequential versus random-access.

• File attributes — “other stuff” associated with file (owner, protection info, time

of creation / last use, etc.)

3



CSCI 3323 November 30, 2020

Slide 7

File Abstraction, Continued

• File operations (things one can do to a file) include create, delete, open,

close, read, write, get attributes, set attributes. Example program using

low-level wrappers for system calls on p. 274.

• Many systems also support operations for “memory-mapped files” (read

whole file into memory, process there, write back out — as mentioned in

previous discussion of memory management).

Slide 8

Directory/Folder Abstraction

• Basic idea — way of grouping / keeping track of files. Can be

– Single-level (simple but restrictive).

– Two-level (almost as simple, better than single-level if multiple users, but

also restrictive).

– Hierarchical.

• Implies need for path names, which can be absolute or relative (to “working

directory”).

• “Hierarchical” implies a tree structure, but one could include support for

something to allow a more-general directed graph (more later). Might be

useful as a way to easily share files among users.

• Operations on directories include create, delete, open, close, read, add entry,

remove entry, link, unlink.

4



CSCI 3323 November 30, 2020

Slide 9

Filesystem Implementation — Overview

• After making decisions about what to implement — how?

• Recall(?) basic organization of disk:

– Master boot record (includes partition table)

– Partitions, each containing boot block and lots more blocks. Abstract view

of access to disk is in terms of reading/writing specified block.

(Figure 4-9 in textbook.)

• How to organize/use those “lots more blocks”? Must keep track of which

blocks are used by which files, which blocks are free, directory info, file

attributes, etc., etc.

Typically start with superblock containing basic info about filesystem, then

some blocks with info about free space and what files are there, then the

actual files.

(Figure 4-9 in textbook.)

Slide 10

Implementing Files

• One problem is keeping track of which disk blocks belong to which files.

• No surprise — there are several approaches. (All assume some outside

“directory”-type structure with some information about each file — a starting

block, e.g.)

5



CSCI 3323 November 30, 2020

Slide 11

Implementing Files — Contiguous Allocation

• Key idea — what the name suggests, much like analogous idea for memory

management.

• How well does it work? consider simplicity, speed (both sequential and

random access), possibility of fragmentation (wasted space).

• Widely used long ago, abandoned, but now maybe useful again.

Slide 12

Implementing Files — Linked-List Allocation

• Key idea — organize each file’s blocks as a linked list, with pointer to next

block stored within block.

(Figure 4-11 in textbook.)

• How well does it work? consider simplicity, speed (both sequential and

random access), possibility of fragmentation (wasted space).

6



CSCI 3323 November 30, 2020

Slide 13

Implementing Files — Linked-List Allocation With Table

In Memory

• Key idea — keep linked-list scheme, but use table in memory (File Allocation

Table or FAT) for pointers rather than using part of disk blocks.

(Figure 4-12 in textbook.)

• How well does it work? consider simplicity, speed (both sequential and

random access), possibility of fragmentation (wasted space).

Slide 14

Implementing Files — I-Nodes

• Key idea — associate with each file a data structure (“index node” or i-node)

containing file attributes and disk block numbers, keep in memory for “open”

files.

(Figure 4-13 in textbook.)

• How well does it work? consider simplicity, speed (both sequential and

random access), possibility of fragmentation (wasted space).

7



CSCI 3323 November 30, 2020

Slide 15

Implementing Filesystems — File Attributes

• Another issue is where to keep file “attributes” (owner, timestamps, etc.).

• One way is to keep it in directory.

• Another way is to keep it elsewhere, e.g., in i-node.

Slide 16

Filesystem Implementation — Directories

• Many things to consider here — whether to keep attribute information in

directory, whether to make entries fixed or variable size, etc.

• If directory abstraction is basically hierarchical but allows some way of

creating a non-tree directed graph, must figure out how to do that. Windows

has “shortcuts”; UNIX has “hard links” (in which different directory entries

point to a common structure describing the file) and “soft (symbolic) links” (in

which the link is a special type of file).

8



CSCI 3323 November 30, 2020

Slide 17

Virtual File Systems

• Apparently many possibilities for implementing filesystem abstraction, with the

usual tradeoffs. Do we have to choose one, or can different types coexist?

The latter . . .

• In Windows, having different filesystems on different logical drives is

managed via drive letters.

• In UNIX, current approach is usually a “virtual file system” — basically, an

extra layer of abstraction (remember the adage about how that can solve any

programming problem).

Slide 18

Journaling Filesystems — Overview

• As we’ll discuss later (and as you may know!) — O/S sometimes doesn’t

perform “write to disk” operations right away (caching).

• One result is likely improved performance. Another is potential filesystem

inconsistency — operations such as “move a block from the free list to a file”

are no longer atomic.

• Idea of journaling filesystem — do something so we can regard updates to

filesystem as atomic.

• To say it another way — record changes-in-progress in log, when complete

mark them “done”.

• A key benefit — after a system crash, only have to look at log for incomplete

updates, rather than doing a full filesystem consistency check. (This can save

a lot of time!)

9



CSCI 3323 November 30, 2020

Slide 19

Implementing Filesystems — Free Blocks

• Another issue is how to keep track of which blocks are free.

• More than one way . . .

(Figure 4-22 in textbook.)

Slide 20

Managing Free Space — Free List

• One way to track which blocks are free: list of free blocks, kept on disk.

• How this works:

– Keep one block of this list in memory.

– Delete entries when files are created/expanded, add entries when files are

deleted.

– If block becomes empty/full, replace it.

10



CSCI 3323 November 30, 2020

Slide 21

Managing Free Space — Bitmap

• Another way to track which blocks are free: “bitmap” with one bit for each

block on disk, also kept on disk.

• How this works:

– Keep one block of map in memory.

– Modify entries as for free list.

• Usually requires less space.

Slide 22

Filesystem Performance

• Access to disk data is much slower than access to memory: seek time plus

rotational delay plus transfer time. (Well, for disks that rotate. Solid-state

disks don’t, but they have their own issues, e.g., limits on number of writes?)

• So, file systems include various optimizations . . .

11



CSCI 3323 November 30, 2020

Slide 23

Improving Filesystem Performance — Caching

• Idea — keep some disk blocks in memory; keep track of which ones are there

using hash table (base hash code on device and disk address).

• When cache is full and we must load a new block, which one to replace?

Could use algorithms based on page replacement algorithms, could even do

LRU accurately — though that might be wrong (e.g., want to keep data blocks

being filled).

• When should blocks be written out?

– If block is needed for file system consistency, could write out right away. If

block hasn’t been written out in a while, also could write out, to avoid data

loss in long-running program.

– Two approaches: “Write-through cache” (Windows) — always write out

modified blocks right away. Periodic “sync” to write out (UNIX).

Slide 24

Improving Filesystem Performance — Block
Read-Ahead

• Idea — if file is being read sequentially, can read some blocks “ahead”. (Of

course, doesn’t help if file is being read non-sequentially. Decide based on

recent access patterns.)

12



CSCI 3323 November 30, 2020

Slide 25

Improving Filesystem Performance — Reducing Disk

Arm Motion

• Group blocks for each file together (easier if bitmap is used to keep track of

free space). If not grouped together, “disk fragmentation” may affect

performance.

• If i-nodes are being used, place them so they’re fast to get to (and so maybe

we can read an i-node and associated file block together).

Slide 26

Disk Fragmentation

• Idea: If blocks that make up a file are (mostly) contiguous, faster to read them

all. If not, “disk fragmentation”.

• How likely is disk fragmentation? Depends on filesystem, strategy for

allocating space for files.

• “Defragmenter” utility can be run to correct it. Windows comes with one.

Linux doesn’t. The claim is that UNIX and Linux filesystems typically don’t

become fragmented unless the disk is close to full.

13



CSCI 3323 November 30, 2020

Slide 27

Filesystems — Quotas

• Why have quotas? Disk space is cheap, right? yes, but more space used

means more to back up, and on multi-user systems there are fairness issues,

and the possibility that one careless user will negatively affect others.

• Implementation involves keeping track, for each user, of space used versus

space allowed. Must be updated every time a file is changed/created/deleted.

Some systems allow “grace period”, but eventually all will disallow, for user

over quota, creation of new files or expansion of existing files.

Slide 28

Filesystem Reliability — Backups

• Why do backups? sometimes data is more valuable than physical medium,

and might need to

– Recover from disaster (rare these days, but possible).

– Recover from stupidity (less rare – hence “recycle bin” idea).

• Many issues involved: which files to back up, how to store backup media, etc.,

etc. Discussion in textbook.

14



CSCI 3323 November 30, 2020

Slide 29

Filesystem Reliability — Consistency Checks

• Can easily happen that true state of filesystem is represented by a

combination of what’s on disk and what’s in memory — a problem if shutdown

is not orderly.

• Solution is a “fix-up” program (UNIX fsck, Windows scandisk). Kinds of

checking we can do:

– Consistency check: For each block, how many files does it appear in

(treating free list as a file)? If other than 1, problem — fix it as best we can.

– File consistency check: For each file, count number of links to it and

compare with number in its i-node. If not equal, change i-node.

– Etc., etc. — see text.

Slide 30

Example Filesystems

• Textbook describes several filesystems. Normally I talk in lecture about the

first two (MS-DOS and UNIX V7).

• But we have limited time, so — review next few slides and skim textbook

discussion, please.

15



CSCI 3323 November 30, 2020

Slide 31

Example Filesystem — MS-DOS FS

• Filename restriction — eight-character name plus three-character

extension. (!) (Textbook doesn’t say this, but there are/were ways of faking

longer names, basically by mapping longer names into inscrutable

short-enough ones.)

• Directory entries contain filename, attributes, timestamp, size, and block

number of first block. How are other blocks found? FAT (File Allocation Table).

• Various versions depending on how many bits used to store block number

(FAT-12, FAT-16, FAT-32, though the last is apparently really FAT-28). Each

defines a set of permitted block sizes, all multiples of 512K.

• Simple, which is good, but imposes limits on file size and partition size.

Keeping entire FAT in memory could be a problem if it’s big (depends on

number of bits used for block number).

Slide 32

Example Filesystem — UNIX V7

• Filename restriction — each part of path name at most 14 characters.

• So, directory entry is just 14-byte name and i-node number.

• I-nodes are all stored in a contiguous array at the start of the file system (right

after boot block and a “superblock” containing additional parameters).

• What’s in each i-node? attributes (permission bits, numeric owner and group

ID, timestamps, links count) and list of blocks — last three are pointers to

“single indirect”, “double indirect”, and “triple indirect” blocks. (Figure 4-33 in

textbook.)

16



CSCI 3323 November 30, 2020

Slide 33

Example Filesystem — UNIX V7, Continued

• To find a file:

– Start with root directory — its i-node is in a known place.

– Scan directory for first part of path, get its i-node, read it, scan for next part

of path, etc.

– Relative path names are handled by including “.” and “..” in each directory,

so no special code needed(!).

(Figure 4-34 in textbook.)

• Not so simple, and still imposes a limit on total file size, but flexible? and

probably requires less system memory, since only i-nodes for open files need

to be in memory.

Slide 34

UNIX “Everything’s a File”

• UNIX represents a lot of resources as “files” (so that programmers can work

with them using familiar(?) mechanisms for accessing files).

• Already mentioned — /dev contains “special files” representing I/O devices,

real and pretend (“pseudo-terminals”).

• Somewhat similar is /proc, which presents information about system and

all running processes as “files” (but they aren’t really). /sys

(Linux-specific?) is similar.

17



CSCI 3323 November 30, 2020

Slide 35

UNIX Filesystems — Hard Links versus Symbolic Links,
Revisited

• As mentioned previously, many filesystems provide a mechanism for creating

not-strictly-hierarchical relationships among files/folders. UNIX typically has

two:

– “Hard” links allow multiple directory entries to point to the same i-node.

– “Soft” (symbolic) links are a special type of file containing a pathname

(absolute or relative).

• (Why two? Good question. Compare and contrast . . . )

Slide 36

Filesystems — What Do Current Systems Use?

• Linux — default is now probably ext4, successor to ext2 and ext3 with

journalling. Very much like UNIX V7 conceptually, though with support for

much longer filenames. Other filesystems possible/supported, and support for

accessing various Windows filesystems provided via Samba.

• Mac OS X (“macOS”?) — Apple File System, externally pretty UNIX-like,

possibly internal differences.

• Windows — NTFS is default, support still provided for FAT-xx.

18



CSCI 3323 November 30, 2020

Slide 37

Minute Essay

• If you have a system that supports multiple different file systems (such as

Linux with Samba to access Windows files), what problems might arise in

copying files between different file systems?

(We had an interesting problem many years ago with backing up /users to

an OS X machine because the default for OS X filesystems is

case-insensitive.)

Slide 38

Minute Essay Answer

• Case sensitivity is one source of potential problems. Other potential problems

include restrictions on what characters can appear in filenames and what

notion of file ownership and permissions is supported.

• In general, if the two filesystems don’t support exactly the same abstraction,

problems could arise. It might seem that it could also be a problem if they

implement the idea of files in different ways, but a good copy program should

be able to cope with that.

19


