
CSCI 3323 (Principles of Operating Systems), Fall 2021

Homework 4a

Credit: 15 points.

1 Reading

Be sure you have read, or at least skimmed, Chapters 25, 26, 27, 28, 30, 31, 32, and 34 of the
textbook. (Yes, I’m skipping chapters 29 and 33.)

2 Problems

Answer the following questions. You may write out your answers by hand and scan them, or you
may use a word processor or other program, but please turn in a PDF or plain text file. (No links
to shared files on Google Drive please, and no word-processor files.) Turn it in by putting it in
your course “TurnIn” folder on Google Drive. Please be sure to include your name somewhere in
the file, so when I print it for grading I know whose work it is. (In the pledge is fine.)

1. (7.5 points) Consider a simple print-spooling system in which all processes that want to print
have access to a shared “print queue” (a list of filenames to be printed), and one process
actually performs the printing. Pseudocode for the two kinds of processes (those putting
things in the print queue, and the one process actually printing them) might look like the
following. Variable printQueue is shared among processes, but all other variables are local
to a method/process.

Printer process:

while (true) {

outFileName = generateFileToPrint();

enqueue(printQueue, outFileName);

}

Printer user process:

while (true) {

if (!empty(printQueue)) {

fileToPrint = dequeue(printQueue);

print(fileToPrint);

}

}

Do we need some sort of locking to make this work right? If so, say how many locks you
think would be needed and where you would put calls to lock() and unlock().

2. (7.5 points) Consider again our semaphore-based solution to the mutual-exclusion problem:

1



CSCI 3323 Homework 4a Fall 2021

// shared variables

semaphore mutex(1); // initial value 1

// process

while (true) {

down(mutex);

do_critical_region();

up(mutex);

do_non_critical_region();

}

Answer the following questions.

(a) Would this solution still work (i.e., guarantee that only one process at a time is in its
critical region, no process waits forever, etc.) if the initial value of the semaphore mutex
were 0? Why or why not?

(b) Would this solution still work if the initial value of the semaphore mutex were 2? Why
or why not?

3 Essay and pledge

Include with your assignment the following information.
For programming assignments, please put it a separate file. (I strongly prefer plain text, but

if you insist you can put it in a PDF — just no word-processor documents or Google Drive links
please.) For written assignments, please put it in your main document.

3.1 Pledge

This should include the Honor Code pledge, or just the word “pledged”, plus at least one of
the following about collaboration and help (as many as apply). Text in italics is explanatory or
something for you to fill in; you don’t need to repeat it!

• I did not get outside help aside from course materials, including starter code, readings, sample
programs, the instructor.

• I worked with names of other students on this assignment.

• I got help with this assignment from source of help — ACM tutoring, another student in
the course, etc. (Here, “help” means significant help, beyond a little assistance with tools or
compiler errors.)

• I got help from outside source — a book other than the textbook (give title and author), a
Web site (give its URL), etc.. (Here too, you only need to mention significant help — you
don’t need to tell me that you looked up an error message on the Web, but if you found an
algorithm or a code sketch, tell me about that.)

• I provided help to names of students on this assignment. (And here too, you only need to tell
me about significant help.)

2



CSCI 3323 Homework 4a Fall 2021

3.2 Essay

This should be a brief essay (a sentence or two is fine, though you can write as much as you like)
telling me what if anything you think you learned from the assignment, and what if anything you
found interesting, difficult, or otherwise noteworthy.

3


