
CSCI 3323 September 3, 2021

Slide 1

Administrivia

• Most people have not watched the recorded lecture for last week yet. Not

unreasonable given when I posted it, but don’t keep putting it off.

• Reminder: Reading quiz 1 due today (11:59pm). Turn in via “turn-in” Google

Drive folder.

Reading quiz 2 posted but not 100% complete yet. Due next Monday.

Slide 2

Processes and Virtualizing the CPU — Recap

• A key thing we want from an operating system — allow multiple things to be

happening “at the same time” (really or in effect).

• Define in terms of “process” abstraction.

• Implement by virtualizing the CPU. If you keep in mind the big picture, all the

details should make sense?

1

CSCI 3323 September 3, 2021

Slide 3

Implementing Processes, Continued

• In the big picture, each process consists of a program (read in from disk) and

a machine state. How to execute the program?

We want execution to be efficient, but we also want it to be “safe”.

• “Safe”? a couple of very old stories . . .

Slide 4

Sidebar: Two Very Old War Stories

• First story (“how I discovered the difference between DOS and a real

operating system’):

I started out on mainframes and other multiuser systems and was not an

early adopter of PCs. During that time an employer got me my first PC. I was

taking courses part-time and learning Pascal. One of my homework programs

failed in strange and puzzling ways . . .

(Details in lecture.)

• Second story (no catchy name but similar idea):

I’d had access to UNIX desktop systems but not to Windows. In the process

of learning my way around Windows (and the whole “WIMP” paradigm) I did

something that also produced very bad results . . .

(Details in lecture.)

2

CSCI 3323 September 3, 2021

Slide 5

Running Programs, Continued

• For efficiency, best thing would seem to be “direct execution” (as opposed to,

say, emulation).

• But that’s potentially unsafe — hence the term “limited direct execution”.

Requires some support from hardware.

Slide 6

Hardware — Dual Mode Operation

• In hardware:

Distinguish between “kernel mode” and “user mode”. Designate some

instructions as “in kernel mode only”.

• Attempt to execute kernel-mode-only instruction in user mode is an error and

usually crashes the program.

• (Connecting to CSCI 2321: Could implement this using a bit in a

special-purpose register, which kernel-mode-only instructions check.)

3

CSCI 3323 September 3, 2021

Slide 7

A Dilemma

• But there are things you want user programs to do — e.g., create files — that

require kernel-mode-only instructions.

• How to make this possible? “system calls”.

• (Textbook’s discussion of this topic a bit x86-centric, unfortunately. I’ll try to

discuss more generally here.)

Slide 8

System Calls — Mechanism

• Library routine (running in user mode) sets up parameters and issues TRAP

instruction or equivalent. A key parameter says which system call is being

made (to create a process, open a file, etc.).

• TRAP instruction switches to kernel mode and transfers control to a fixed

address.

• At that address is code for “handler” that uses parameters set up by library

routine to figure out which system call is being invoked and call appropriate

code.

• When processing of system call is finished, control returns to calling program

— if appropriate. (What are other possibilities? Consider situations involving

waiting, errors.) Return to calling program also switches back to user mode.

4

CSCI 3323 September 3, 2021

Slide 9

Example: System Calls in MIPS

• MIPS instruction set includes syscall instruction that generates a

system-call exception. MIPS interrupts/exceptions use special-purpose

registers to hold type of exception and address of instruction causing

exception.

Before issuing syscall, program puts value indicating which service it

wants in register $v0. Parameters for system call are in other registers (can

be different ones for different calls).

• Interrupt handler for system calls looks at $v0 to figure out what service is

requested, other registers for other parameters.

• When done, it uses rfe instruction to restore calling program’s environment,

then returns to caller using value from EPC register.

Slide 10

Example: System Calls in MIPS/SPIM

• SPIM simulator — a primitive O/S! — defines a short list of system calls.

Example code fragment:

la $a0, hello

li $v0, 4 # "print string" syscall

syscall

....

.data

hello: .asciiz "hello, world!\n";

5

CSCI 3323 September 3, 2021

Slide 11

System Calls — Services Provided

• Typical services provided include creating processes, creating files and

directories, etc., etc. — details depend on (and in some ways define, from

application programmer’s perspective) operating system.

• Examples from last year’s textbook:

– POSIX (Portable Operating System Interface (for UNIX)) — about 100

calls.

– Win32 API (Windows 32-bit Application Program Interface) — thousands

of calls.

Worth noting that the actual number of system calls is likely smaller —

interface may contain function calls that are implemented completely in user

space (no TRAP to kernel space).

Slide 12

Time Sharing

• Going back to big picture, remember that we want to share actual processors

among processes, and the mechanism for doing that is “time sharing”.

• To make this work, have to periodically stop running one process and run

another. When to do that?

• Simple way is just to run until interrupted — because running process has to

wait (e.g., for I/O) or terminates, or in response to an external interrupt.

• This works fine for batch systems, but interactive systems — what if running

program doesn’t do any of those? In “cooperative multitasking” can add a

system call “yield”, but — well, problem is obvious, no?

• Again we need help from hardware . . .

6

CSCI 3323 September 3, 2021

Slide 13

Timer Interrupts

• Idea here is to set a timer that will generate an interrupt after some specified

amount of time.

• Before starting a user program, operating system sets the timer.

Slide 14

Sidebar? Interrupts

• Many situations in which it’s useful or necessary to stop current program and

do something else, such as:

– Running program ends normally.

– An error occurs.

– Something outside the CPU (e.g., an I/O device) signals it.

– A program makes a system call.

• All processed similarly as “interrupts”. Common goal is to stop what we’re

doing, go attend to the interrupt (“interrupt handler”), then (maybe) pick up

where we left off.

• On some systems, single interrupt handler; one others, different handlers for

different kinds of interrupts.

7

CSCI 3323 September 3, 2021

Slide 15

Interrupts, Continued

• Hardware and interrupt-handler code must between them make it possible to

“pick up where we left off”. So they need to:

• Save the current program counter.

• Save other machine state, such as contents of registers.

Slide 16

Context Switches

• Basic idea: Stop what we’re doing and switch to something else.

• Similar to what happens in interrupt handler: Save current program counter

and other machine state. Then load new program counter and state from

previously-saved values.

• In effect, switch “execution context”.

8

CSCI 3323 September 3, 2021

Slide 17

Scheduling

• When a running process blocks or ends, and perhaps after handling an

interrupt, want to switch to another process. Often more than one choice.

• Who chooses? “Scheduler” — and many ways to do it. Next topic . . .

Slide 18

Minute Essay

• Questions?

9

