
CSCI 3323 September 22, 2021

Slide 1

Administrivia

• Reminder: Reading Quiz 2 due today.

• First homework posted, in two parts (1a is written problems, 1b is a

programmming problem).

• I’m planning to record a second lecture for this week, by Friday, and ask you

to watch over the weekend. Hope that’s okay!

• Also, about assignments: My plan is to have one more reading quiz and one

more homework about virtualizing the CPU and then move on.

• (And yes, I am hoping to get some feedback to you soon about what you’re

turning in!)

Slide 2

Minute Essay From Last Lecture

• Opinions differ as to whether it would help to relax the collaboration rule for

reading quizzes. I think I will.

• Most people seemed to find them worthwhile, anyway, though some found the

questions vague. I can believe it! coming up with good questions — for these,

homeworks, etc. — is harder than it might seem?

1



CSCI 3323 September 22, 2021

Slide 3

CPU Scheduling

• (The textbook organizes this discusssion a bit differently; I’ll approach it more

as the textbook I used to do did. Same material!)

• We’ve talked about how processes can be in different states (ready, running,

blocked, others) and that some transitions (e.g., “running” to “blocked”) don’t

really involve any decision-making, but others (“ready” to “running”) do.

• Who/what makes these decisions? “scheduler”.

Slide 4

Scheduling, Continued

• When to make scheduling decisions?

– When a new process is created.

– When a running process exits.

– When a process becomes blocked (I/O, etc.).

– After an interrupt (external source, timer, etc.).

One possible decision — “go back to interrupted process” (e.g., after I/O

interrupt). But there are other choices.

• How to choose? various “scheduling algorithms”.

2



CSCI 3323 September 22, 2021

Slide 5

Scheduler Goals

• Importance of scheduler can vary; extremes are

– Single-user system — often only one runnable process, complicated

decision-making may not be necessary (though still might sometimes be a

good idea).

– Mainframe system — many runnable processes, queue of “batch” jobs

waiting, “who’s next?” an important question.

– Servers / workstations somewhere in the middle.

• First step is to be clear on goals — want to make “good decisions”, but what

does that mean? (Textbook frames this as “what should we use for a metric”?)

Slide 6

Scheduler Goals, Continued

• Typical goals for any system:

– Fairness — similar processes get similar service.

– Policy enforcement — “important” processes get better service.

– Balance — all parts of system (CPU, I/O devices) kept busy (assuming

there is work for them).

• Other goals depend on system type.

3



CSCI 3323 September 22, 2021

Slide 7

Terminology

• Discussion often in term of “jobs” — holdover from mainframe days, means

“schedulable piece of work”.

• Processes usually alternate between “CPU bursts” and I/O, can be

categorized as “compute-bound” (“CPU-bound”) or “I/O-bound”.

• Scheduling can be “preemptive” or “non-preemptive”.

Slide 8

Scheduler Goals By System Type

• For batch (non-interactive) systems, possible goals (might conflict):

– Maximize throughput — jobs per hour.

– Minimize (average?) turnaround time (time from when user submits work

to time they get results back).

– Maximize CPU utilization.

Preemptive scheduling may not be needed.

• For interactive systems, possible goals:

– Minimize response time.

– Make response time proportional to user’s perception of task difficulty.

Preemptive scheduling probably needed.

4



CSCI 3323 September 22, 2021

Slide 9

Scheduler Goals By System Type, Continued

• For real-time systems, possible goals:

– Meet time constraints/deadlines.

– Behave predictably.

Slide 10

Scheduling Algorithms

• Many, many scheduling algorithms, ranging from simple to not-so-simple.

• Point of reviewing lots of them? notice how many ways there are to solve the

same problem (“who should be next?”), strengths/weaknesses of each.

5



CSCI 3323 September 22, 2021

Slide 11

First Come, First Served (FCFS)

• Basic ideas:

– Keep a (FIFO) queue of ready processes.

– When a process starts or becomes unblocked, add it to the end of the

queue.

– Switch when the running process exits or blocks. (I.e., no preemption.)

– Next process is the one at the head of the queue.

• Points to consider:

– How difficult is this to understand, implement?

– What happens if a process is CPU-bound?

– Would this work for an interactive system?

Slide 12

Shortest Job First (SJF)

• Basic ideas:

– Assume we know ahead of time how long each “job” will take, and each

job consists of a single CPU burst (so, no blocking).

– Keep a queue of these jobs.

– When a process (job) starts, add it to the queue.

– Switch when the running process exits (i.e., no preemption).

– Next process is the one with the shortest running time.

• Points to consider:

– How difficult is this to understand, implement?

– What if we don’t know running time in advance?

– What if all jobs are not known at the start?

– Would this work for an interactive system?

6



CSCI 3323 September 22, 2021

Slide 13

SJF, Continued

• Key advantage — if all jobs are in the queue at start, this gives the best

average turnaround time — provably.

• Key disadvantage — what happens if we’re running a medium-length job and

a shorter one arrives?

Slide 14

SJF Plus Preemption

• A possible fix — allow preempting running job.

• (Various names — PSJF (preeptive SJF), STCF (shortest time to completion

first), SRTN (shortest remaining time next).)

• Basic idea:

– Keep a queue of ready processes as before.

– Switch when the running process exits or a new process starts. (I.e.,

preemption allowed — requires recomputing time left for preempted

process.)

– Next process is the one with the shortest time left.

7



CSCI 3323 September 22, 2021

Slide 15

Round-Robin Scheduling

• Basic ideas:

– Keep a queue of ready processes, as before.

– Define a “time slice” — maximum time a process can run continuously

before it must yield to another. (Should be a multiple of timer-interrupt

period.)

– When a process starts or becomes unblocked, add it to the end of the

queue.

– Switch when the running process uses up its time slice, or it exits or

blocks. (I.e., preemption allowed!).

– Next process is the one at the head of the queue.

Slide 16

Round-Robin Scheduling, Continued

• Points to consider:

– How difficult is this to understand, implement?

– Would this work for an interactive system?

– How do you choose the time slice? (What if it’s really long? really short?)

8



CSCI 3323 September 22, 2021

Slide 17

Minute Essay

• How are you doing with how I ask you to turn work in (e-mail for minute

essays, Google Drive for homeworks)?

(For what it’s worth, I’m aiming here for a compromise between what might

work best for y’all — TLEARN? Google Classroom? — and what works well

for me.)

9


