
CSCI 3323 October 8, 2021

Slide 1

Administrivia

• Homeworks 2a, 2b available; due next week.

Slide 2

Sharing Memory, Recap/Review

• Time-sharing tried but not very practical beyond very early days.

• Space-sharing obvious alternative, but then do need to protect/isolate

processes from each other.

• Either way need to protect the O/S from user processes.

• Solutions, as with virtualizing CPU, will need combination of hardware and

O/S.

1

CSCI 3323 October 8, 2021

Slide 3

Sharing Memory — Relocation

• Simplest way is to give each process a contiguous chunk of memory. This

can work without any virtualization if we deal with “relocation problem” —

programs are compiled/linked assuming particular starting locations, which

can’t be right for all programs.

• Textbook shows an example. If the x86 throws you, similar MIPS code might

be:

lw $t0, 0($s0)

addi $t0, $t0, 3

sw $t0, 0($s0)

with all instructions 4 bytes in length rather than varying lengths.

Slide 4

Relocation, Continued

• One way to cope is “static relocation”. Alluded to in Computer Design. Idea is

that when loading program into memory we patch up all references to

absolute addresses.

Obviously a bit cumbersome and means more work if we ever want to move

the program to a different spot in memory.

Also provides nothing in the way of protection/isolation.

• Another way, more flexible and with possibility of protection/isolation, is

“dynamic relocation”, a.k.a. address translation.

2

CSCI 3323 October 8, 2021

Slide 5

Address Translation

• Key idea is that programs use “virtual addresses” relative to an “address

space” abstraction.

• Challenge is for O/S to map that to physical hardware.

• Will need much help from hardware; parts of the hardware involved referred

to as “MMU” (memory management unit).

Slide 6

Memory Management — Contiguous Allocation

• Stay with idea of one contiguous chunk of memory per process, but allow

program to continue to use addresses relative to 0.

• For each process, O/S has to keep track of “base” and “limit”/“bound”. Values

kept in special registers for use by MMU, changed on switch between

processes. Clearly instructions to switch them need to be privileged!

• Actual arithmetic for translation is simple, no? And while MMU is doing that, it

can also be checking for out-of-bounds reference using limit/bound register.

What if found? Generate hardware exception (interrupt). (This addresses the

question of protection/isolation, no?)

3

CSCI 3323 October 8, 2021

Slide 7

Memory Management with Contiguous Allocation —
Hardware

• Translate addresses, using base register.

• Check for out of bounds, using bound register, generating exception if found.

• Allow changing these registers only in supervisor/kernel mode.

Slide 8

Memory Management with Contiguous Allocation —
Software

• Find space for new process during process creation. If all address spaces the

same size, not too hard — think of memory as consisting of big chunks, all

the same size, and keep a list of those that are free.

• Switch MMU registers when switching processes.

• Deal with any out-of-bounds exceptions generated by MMU.

4

CSCI 3323 October 8, 2021

Slide 9

Memory Management — Next Steps

• Early on, contiguous-allocation scheme was widely used.

• Most versions did relax the fixed-size-per-process rule, but then managing

free space was far more complicated. (You can perhaps imagine?)

• So as a next step — “segmentation”.

(Are you wondering whether maybe those cryptic errors generated by C

programs that misuse pointers are about to make sense?)

Slide 10

Memory Management — Segmentation

• Extension of contiguous-allocation scheme, but with more than one

base/bound pair — i.e., more than one “segment”.

• Idea is to have one segment per logical region of address space — one for

code and fixed data, one for heap, one for stack, with one base/bound pair

per segment.

• How then to translate from virtual address?

5

CSCI 3323 October 8, 2021

Slide 11

Segmentation — Address Translation

• One way (“explicit”) — use first few bits of address as segment number, the

rest for offset within segment. Simple but limits size of largest segment to

1/2n (n the number of segments) of total number of addresses.

• Another way (“implicit”) — decide which segment based on where address

came from. I admit I’m not quite sure how this works!

• Worth noting that heap grows toward larger addresses, stack toward smaller

addresses. Could take this into account (details in textbook).

Slide 12

Segmentation — Shared Memory and Protection

• O/S designers realize early on — if multiple processes running the same

program, no need for all of them to have a separate copy of code in memory.

• Easy way to do that — have them all share a segment containing only code.

• Clearly only works well if processes can’t change it. So need some notion of

what of its memory a process can actually change — “protection bits”, add-on

to base/bound pairs.

6

CSCI 3323 October 8, 2021

Slide 13

Segmentation — Coarse-Grained Versus Fine-Grained

• Discussion so far has been in terms of small number of big segments.

• But possible to also design system (hardware and O/S) to support large

number of potentially small segments. Requires more complex support —

“segment table” rather than small number of base/bound pairs.

• Fine-grained segmentation has some real conceptual advantages — e.g.,

think about a multithreaded program, where each thread needs its own stack.

Slide 14

Segmentation — Protection/Isolation

• Easy to understand how base/bound scheme provided this. How about

segmentation?

• Basically simple — processes can only work with contents of memory they

can find. If it’s not in a process’s segment table, it can’t find it! That combined

with usual(?) checking of bound/limit value provides what we want — with a

provision for partially sharing what we do want to share.

7

CSCI 3323 October 8, 2021

Slide 15

Segmentation — Limitations

• Fine-grained segmentation in particular provides a nice abstraction for

programmers.

• But now have the problem of managing not big fixed-size chunks (as with

simple contiguous-allocation scheme) but chunks of varying sizes.

• Previously had to worry about wasted space within address space (“internal

fragmentation”). Now have to worry about having plenty of free space total but

none in big-enough chunks (“external fragmentation”).

• Could address external fragmentation via periodic “compaction” but that has

minuses too.

Slide 16

So Many Solutions?

• Textbook makes an interesting point:

• If there seem to be a lot of solutions, maybe that’s a tip that there’s no one

best. “Hm!”?

8

CSCI 3323 October 8, 2021

Slide 17

Minute Essay

• Questions? (Though you may not have any until I start asking you to do

assignments :-).)

9

