
CSCI 3323 October 11, 2021

Slide 1

Administrivia

• Reminder: Homeworks 2a, 2b due Thursday.

• Attendance reports generated and uploaded. Current through noon 10/11.

Slide 2

Managing Free Space

• Problem of managing varying-size chunks of memory arises in more than one

context — space within process (malloc() and free()), space among

processes.

(Note in passing that if using the textbook’s version of base/bound method of

allocating space to processes, problem doesn’t really arise — all chunks are

same size and we only have to keep track of which are free.)

• Since chunks vary in size, “external fragmentation” a problem. Compaction

can sometimes help, but not always:

Consider whether you can do that with space managed by malloc() and

free(). How can you find all references?

1



CSCI 3323 October 11, 2021

Slide 3

Managing Free Space — Mechanisms

• Manage in terms of a “free list” (list of free regions, each with location and

size).

• Basic operations on this list: “split”, “coalesce”.

• Splitting happens when space is allocated, if we assign part of a free region.

• Coalescing is kind of optional, but hard to imagine a practical system without it

— idea is that if we have two free regions next to each other, merge into one.

• Since free() doesn’t allow specifying size, actual allocated space typically

includes header specifying size.

Slide 4

Managing Free Space — Mechanisms, Continued

• Free list itself has to be kept somewhere! Linux puts it within the space being

managed(!). Details interesting but could be skipped/skimmed.

• Where does the space come from in the first place? Call to mmap().

Interesting function in that it can either copy contents of a file (all or part)

directly into memory or just reserve an area of memory.

Worth noting that mmap() is specific to Linux and some other UNIX-like

systems. But other operating systems likely have something alone the same

lines.

2



CSCI 3323 October 11, 2021

Slide 5

Managing Free Space — Policy/Strategy

• Idea of free list, split / coalesce — mechanisms.

• Unaddressed so far — question of which block of free list to split.

• Several strategies, some relatively simple (name almost tells you everything

you need to know), others less so.

Slide 6

Simple Strategies

• Best fit.

• Worst fit.

• First fit.

• Next fit.

3



CSCI 3323 October 11, 2021

Slide 7

Less Simple Strategies — Segregated Lists

• One approach — keep several free lists for chunks of various commonly-used

sizes, plus a general list for all other sizes.

• Idea behind “slab allocator”, which the textbook authors seem to admire.

Does sound good.

• (Interesting tangential observation about what “great” means in some fields.)

Slide 8

Less Simple Strategies — Buddy Allocators

• Basic idea here is to make coalescing simple.

• Binary buddy allocator allocates space in sizes that are powers of two (and

presumably of some minimum size).

• When a chunk is free, only one other chunk it could be merged with (its

“buddy”). The result might also need to merged with its buddy — recurse until

buddy is not free (or until everything free?).

4



CSCI 3323 October 11, 2021

Slide 9

Other Strategies

• Textbook says ways to solve this problem (managing collection of varying-size

chunks of free space) an active area of research.

• One point to keep in mind — good strategy will “scale” well. So “list” may in

fact be some much more exotic(?) data structure (like the red-black trees

used by the Linux scheduler?).

Slide 10

Minute Essay

• Questions?

• Had you thought previously about how complicated it might be for

malloc() to get memory for you?

5


