CSCI 3323 October 13, 2021

Administrivia

o Reminder: Homeworks 2a, 2b due Thursday.
e Reading Quiz 4 posted; due next Wednesday. Chapters 12 through 16.

o Homework 1a graded.

Slide 1

Paging — Motivation

e Simplest way to space-share memory — give each process a contiguous
chunk, all chunks the same size — simple but not very satisfactory.

e Key problem is that it's good to have as large an address space as possible,
with the assumption that most processes will use a small part of that (but

Slide 2 which part and how much might vary).

o How to implement that? Segmentation is one way, preferably “fine-grained” for
more flexibility. But with segmentation you have the problem of managing
varying-size chunks.

e Paging tries to get best of both worlds — simplicity of allocating memory in
fixed-size chunks, ability to efficiently represent “sparse” address spaces.




CSCI 3323 October 13, 2021

Paging — Key Idea

e Key idea is to pick a convenient size N (often a power of two), and:
e Divide each process’s address space into N -byte “pages”.
e Divide physical memory into /N -byte “page frames”.

Slide 3 e Place pages in page frames wherever they’ll fit. No need for a process’s

pages to be contiguous or in order.

o Now the problem of keeping track of what’s free is simpler again — list of
page frames.

e Store map from page number to page frame number in “page table”.

e Textbook Figure 18.2 shows doing this for one process, but idea works for
more than one — distinct page table for each process.

Paging — Address Translation

e By dint of drawing a few pictures, probably not hard to convince yourself that
to translate virtual address A to physical address P you need to:

e Divide A by page size IV, giving quotient () and remainder . Quotient is

page number, which we look up in page table to find page frame number ’.
Slide 4 Remainder is offset. Multiply ' by N and add R and you have the physical
address.

e Division is slow, however, and if our goal is efficiency?

e Recall however that division by a power of 2 is quite fast! Which is why page
sizes usually are powers of 2.




CSCI 3323 October 13, 2021

Sidebar: How Much Memory Can We Address?

e Note that size of address spaces is constrained by size of address — in a
“32-bit” system, addresses are 32 bits, which means the largest address
space is 232 bytes, or 4GB.

e Similarly, number of bits available for physical address constrains size of
Slide 5 physical memory. May be the same as number of bits for virtual addresses,
but might be smaller. (Web search suggests that addresses are limited to 48
bits on some “64-bit” systems. But as textbook points out, maximum address
space with 64-bit addresses almost unimaginably huge.)

Contents of Page Table

e Page table is a map. What's in each entry? Page number and page frame
number? Not exactly ...

e No need to store page number — implicit in index. So, page frame number,
plus you want some way to indicate that this page isn’t in use, so there isn’t a
Slide 6 matching page frame. Typically call this a “valid” bit.
e Other useful bits:
Protection — can process read, write, execute from this page.
Present — is page valid but not in memory (much more about that later).

Referenced, modified bits — help track page usage (more about this later
too).




CSCI 3323 October 13, 2021

Page Table Size

e Page table sizes are manageable with very tiny memories, but for anything

realistic ...

e Textbook does calculations for one example. Let’s do another:

Given a page size of 64K (216), 64-bit addresses, and 4G (232) of main
Slide 7 memory, at least how much space is required for a page table? Assume that
you want to allow each process to have the maximum address space possible
with 64-bit addresses, i.e., 264 bytes.
(Hints: How many entries? How much space for each one? and no, this is not

a very realistic system.)

Page Table Size — Example Continued

o Number of entries is 264 /216 i.e., 248,

e Size of each entry — at least enough for page frame number. There are 216

of them, so we need 16 bits for that. Probably should also include a
valid/invalid bit, for a total of 17 bits. Rounding up to a multiple of 8 bits (one

Slide 8 byte), that's 3 bytes per entry.

e Total space is 248 x 3 — bigger than main memory!! so, not realistic.




CSCI 3323 October 13, 2021

4 )

Page Tables in Memory — Problems

e So one potential problem is how much space page tables take up in memory.
e Another problem is speed:

o Would be fast if we could keep the whole page table in registers, but — well,

no, right?
Slide 9
e Logically enough to just keep address of page table in a register. But now
access to any element of memory requires two accesses, one for a
page-table entry!
e So paging is great from standpoint of supporting a nice abstraction. But can
we make it acceptably efficient? (Teacher question. Yes!)
e Questions? Is this making sense so far?
Slide 10




