
CSCI 3323 October 18, 2021

Slide 1

Administrivia

• Reminder: Reading Quiz 4 due Wednesday.

Slide 2

Paging — Review/Recap

• Basic idea is simple: Divide up each process’s address space into “pages” of

some fixed size N , physical memory into “page frames” also of size N , and

map pages actually being used into page frames.

• Note that typically much of a process’s potential address space is unused,

and no need to find physical memory for the not-in-use pages.

• Sounds promising, though two potential problems: speed of access, and size

of page tables.

• But first a couple more things . . .

1



CSCI 3323 October 18, 2021

Slide 3

Address Translation Revisited

• Previously we looked at how to translate virtual to physical address if using

paging — calculate page number and offset, look up page frame number,

combine with offset.

• But what if page is not valid / not present? Hardware generates “page fault”

interrupt / exception. Operating system’s job to decide what to do next. For

now, this means address is invalid, and probably the process should be

terminated.

Slide 4

Paging and Protection / Isolation

• Note that if using paging to space-share memory, many problems involving

who has access to which pages go away:

• Isolation is the default: You can’t access what you can’t find!

• Sharing of selected pages is possible, with support for read-only access if

hardware supports it.

2



CSCI 3323 October 18, 2021

Slide 5

Paging — Speed of Access

• Can’t realistically keep a page table of any size in registers (on chip), so store

in memory.

• But then every memory access actually requires two memory accessses.

What to do?

Slide 6

Caching to the Rescue!

• Caching often a good strategy for anything involving memory, since memory

accesses are slow, but often exhibit:

• Temporal locality — data used in the recent past likely to be used again in the

near future.

• Spatial locality — data in active use often clumped up together (e.g., local

variables in a function, or loops through arrays).

• Makes it likely that page-table accesses will be especially amenable to

caching (all data in a page shares a PTE, right?).

3



CSCI 3323 October 18, 2021

Slide 7

Translation Lookaside Buffer

• Fancy name for cache for page-table entries.

• Idea is that it holds page-table entries in current active use.

• Address-translation hardware first checks this cache.

• If PTE (page-table entry) for address being translated found, proceed to

translate.

• If not, “TLB miss” . . .

Slide 8

TLB Misses

• If needed PTE not in TLB, must find in page table, using address of page

table (in a register) and page number as index.

• Formerly done in hardware, but more-recent hardware may just generate an

interrupt and let software do it.

(Why the switch? If done entirely in software, hardware can be less

complicated, more flexibility for O/S designers.)

• Either way, once the needed PTE is found, hardware should retry the

instruction that generated the miss.

4



CSCI 3323 October 18, 2021

Slide 9

Sidebar: RISC Versus CISC

• At one time computers’ instruction sets (remember those from CSCI 2321?)

were large and included complex operations. Made life nice for assembly

language programmers but harder for hardware designers.

• At some point times changed, and now instruction sets designed with

hardware designers in mind, in the thinking that most programmers will write

in high-level languages, so whether assembly language is highly expressive

doesn’t matter.

(Aside: The Patterson and Hennessy mentioned in the textbook? Authors of

the book I usually use in CSCI 2321!)

Slide 10

TLBs and Context Switches

• Mappings in TLB become invalid if we switch address spaces. Simplest

solution is just to flush cache and let it fill again as the new process runs.

(One more thing that affects speed of context switch.)

• Unless . . . Recognized problem, and some hardware has features to address

it. Details interesting but not critical.

5



CSCI 3323 October 18, 2021

Slide 11

TLBs — Replacement Policy

• TLBs typically “fully associative” caches, in which a cached value can be

anywhere in the cache, as opposed to simpler cache in which if a value is in

the cache at all it’s at one fixed location. (Nice discussion of caches in the

textbook I use for CSCI 2321, but for financial reasons you may not still have

a copy of that.)

• Typically more things we could cache than space to cache them. When we

want to add something, what to evict? Obviously want to minimize TLB/cache

misses. Many strategies possible; two simple ones are “least recently used”

and random. More when we talk about caching memory to disk.

Slide 12

Page Tables — Size

• Second problem: Page tables can be huge, sometimes too big to realistically

fit into memory.

• How to make them smaller?

6



CSCI 3323 October 18, 2021

Slide 13

One Option — Bigger Pages

• Page tables are so big because there are so many pages in address spaces.

• If pages bigger, fewer of them, table smaller. Problem solved? Not really . . .

• Hardware may constrain page sizes.

• Large page size means wasted space within pages.

Slide 14

Another Option — Combine With Segmentation

• For simplicity we want all page tables to be the same size, but most will be

very “sparse” (lots of pages not mapped to a physical page). Wasteful, no?

• One idea — combine paging with segmentation, i.e., have several segments

(which can vary in size), each consisting of a much smaller range of pages.

• Advantages / disadvantages pretty much those of segmentation — avoids

waste, but means system has to deal with things (page tables, here) of

different sizes.

7



CSCI 3323 October 18, 2021

Slide 15

Another Option — Multi-Level Page Tables

• Another idea based on observation that while number of valid pages in page

table may be small compared to total size, not distributed evenly, but in

groups.

• So if we divide the whole table into bigger chunks, odds are many will be

totally unused.

• Then we can represent each unused chunk as “not valid”, and partly-in-use

chunks as pointers to subsets of what would be a full page table. (Figure 20.3

in textbook shows two-level scheme.)

• Saves memory, but with a cost — added complexity, TLB misses mean not

one memory access but two.

• Same idea could be extended to (almost?) arbitrarily many levels.

Slide 16

Another Option — Inverted Page Tables

• Another idea is to turn the basic map around — i.e., rather than map

combination of process and page number to page frame number, map page

frame number to combination of process and page number.

• Ties size of (inverted) page table mostly to size of physical memory (though

number of bits needed for page numbers and for process IDs will be a factor

also).

• Downside is that now finding the right PTE is not a simple table lookup.

Potentially quite slow, so to make this realistic would need to do something

more sophisticated than linear search. (Hm, managing TLB misses in

software looking attractive?)

8



CSCI 3323 October 18, 2021

Slide 17

Paging — Recap

• Seems that two biggest downsides to paging — poor performance, huge data

structures — are solvable.

• Amusing(?) concluding remarks in Chapter 20.

Slide 18

Minute Essay

• Questions? Do you feel like paging is coming together in your head?

Textbook not wrong that there’s a lot of complexity here, but I still say basic

ideas are fairly straightforward.

9


