
CSCI 3323 October 20, 2021

Slide 1

Administrivia

• (Via e-mail.)

Slide 2

“Beyond Physical Memory” — Problem

• We’ve assumed so far that all address-space pages for all processes fit into

physical memory.

• What if they don’t? if the address space is really big, or if there are a lot of

processes?

• (This used to be a much bigger problem, but current systems often have a lot

of memory. But they don’t always. So might be good to know why systems

with less memory still work but aren’t fast.)

1



CSCI 3323 October 20, 2021

Slide 3

“Beyond Physical Memory” — Old Solution

• Once upon a time — explicit “overlays”.

• Idea was, e.g., to split up program into logical pieces not all needed at the

same time, keep in memory only the pieces in use, explicitly move them into

physical memory as needed (and remove them when not).

• Sounds painful and error-prone, no? but probably better than nothing.

Slide 4

“Beyond Physical Memory” — Better Solution

• Traditional solution: Keep some pages somewhere where we have

closer-to-unlimited space, even if it’s slower.

• Traditionally that means (spinning) disk, though now could mean something

less slow such as solid-state device.

• So basically we’re using disk to hold the full complement of address-space

pages for multiple processes, and using RAM (“physical memory” in this

section) to hold the parts in active use. (Caching to the rescue again!)

2



CSCI 3323 October 20, 2021

Slide 5

Swapping, Continued

• Where on disk? “Swap space”, logically partitioned into page-size chunks.

• Swap space can be one big file, or even a whole disk partition. (More about

this when we talk about I/O.)

• Worth noting that size of swap space does constrain how much of this

virtualized memory can be supported.

Slide 6

Mechanisms for Swapping

• In a sense, managing swapping is much like managing TLB misses, though

unlike with those it always involves the O/S:

• Page-table entry also has bit indicating that page is valid but not present in

memory. (Could combine with bit that says “not valid”.)

• In translating a virtual address, MMU still first tries TLB; on a miss, translates

using page table. If page valid but not present, generates a “page fault”

interrupt, transfers to O/S’s handler for those.

• (Recall that TLB misses can be handled in hardware or software. Simpler to

understand if done by hardware, but principles the same.)

3



CSCI 3323 October 20, 2021

Slide 7

Page Faults

• Handling page faults done by O/S handler for page-fault interrupts. (Note that

terminogy not always consistent — “page fault” can mean “page not in

memory” or “error”.)

• Where to find page in swap space? Could be stored in place of page-frame

number in PTE, or could be stored elsewhere.

• O/S finds a free page frame, issues I/O to fetch page, blocks process while

waiting for it to complete.

• When I/O completes, O/S can update PTE and retry instruction that

generated page fault.

Slide 8

Page Faults, Continued

• “Find a free page frame” . . . Not so fast, you say? Right.

• Physical memory is acting as a cache for the global state of memory (all valid

pages of all address spaces), and as with other caches, if it fills up . . .

• Must consider what existing entry to remove — “page-replacement policy” or

“page-replacement algorithm”.

4



CSCI 3323 October 20, 2021

Slide 9

Page Replacement Policies

• As noted, sometimes need more physical memory than is free, so must

choose something in physical memory and “evict” it. Choose how?

• As with other kinds of caching, goal is reduce number of “cache misses”

(here, page faults).

• Textbook goes into some detail about measuring frequency of misses and

calculating performance cost. Interesting but for reasons of time we’ll skip

details. Noteworthy, however, that disk I/O is so much slower than processor

speeds or even access to RAM that even a few page faults can affect

performance.

• So how to do that . . . (To be continued.)

Slide 10

Finding Free Page Frames

• (Okay, one more thing today . . . )

• Often beneficial to have a background process maintaining a pool of free

pages rather than waiting for memory to fill completely — “swap daemon” or

“paging daemon”.

• Same strategy of using background processes can be useful in other contexts

too.

5



CSCI 3323 October 20, 2021

Slide 11

Minute Essay

• Questions? Is this making sense? Once again I feel like if you understand the

big picture so much is common sense!

6


