
CSCI 3323 October 27, 2021

Slide 1

Administrivia

• (By e-mail.)

Slide 2

Complete Virtual Memory Systems

• Previous chapters talked about parts of virtualizing memory — big picture,

many details.

• Putting it all together might be another matter, so two case studies.

1



CSCI 3323 October 27, 2021

Slide 3

Case Study: VAX/VMS

• One is from O/S for DEC’s VAX architecture, from 1970s / early 1980s. O/S

itself may not be in use, but many ideas are. (And even if not: Times change

but sometimes ideas fall out of favor and then come back.)

• DEC major player in the days of “minicomputers” — multi-user computers

smaller than mainframes. In those days every company that who made

hardware also made an O/S for it (or more than one, for IBM anyway). Meant

buying new hardware was more complicated than now.

Slide 4

VAX/VMS — Architecture

• VAX-11 provided 32-bit virtual addresses. Page/segment hybrid, with

relatively small page size of 512 bytes (29) and 2 bits for segment number.

• Lower half of address space (“process space”) unique to each process.

Within that, half used for code and heap, other half for stack.

• Upper half of address space (“system space”) used for O/S code and data,

protected (of course) but shared by all processes.

2



CSCI 3323 October 27, 2021

Slide 5

VAX/VMS — Managing Page Tables

• Small pages plus large address spaces means big page tables — trouble.

What to do?

• First, allow page tables to be just as big as needed — size of code/heap

segment plus size of stack segment.

• Also, keep page tables in kernel-managed memory, where they can be

swapped out to disk if need be. Complicates address translation.

Slide 6

VAX/VMS — More About Address Space

• Figure 23.1 shows full layout of address space.

• No surprises in process space (except maybe leaving page 0 unused).

• System space . . . Idea is to make some kind of communication between O/S

and user programs easier — in textbook’s words, makes kernel almost like a

library to user programs. Should seem plausible?

Of course, access to O/S data controlled by memory protection, so user

programs can’t do things they shouldn’t.

Textbook says this idea is widely used, and it matches what I know about

mainframes I worked on.

3



CSCI 3323 October 27, 2021

Slide 7

VAX/VMS — Page Replacement

• PTE has many of usual fields — but no reference bit(!). (But as it turns out,

apparently you can emulate it. Details in textbook.)

• Architecture is from a time when memory was a scarce resource. So on

multi-user system, concern about programs using more than “their share” of

memory. Many page-replacement algorithms don’t try to balance memory use

equally among processes or users.

• What to do . . .

Slide 8

VAX/VMS — Segmented FIFO Replacement Policy

• Each process has a “resident set size” (RSS) — maximum number of pages

in memory. Each process has a FIFO queue of pages it’s using.

• Simple and requires no support from hardware, but doesn’t perform very well,

so:

• O/S also keeps two global “second-chance” lists, one for clean (unmodified)

pages, one for dirty pages. Pages can be reclaimed from one of these if

needed (avoiding one of the worst aspects of FIFO); processes needing (and

allowed to have?) more memory pull free frames from the clean-pages list.

Effect is a sort of hybrid of FIFO and LRU.

4



CSCI 3323 October 27, 2021

Slide 9

VAX/VMS — More Optimizations

• Small pages also mean swapping I/O is inefficient — disks faster at

transferring data in big chunks. So VAX/VMS writes “clusters” of pages from

global dirty-pages list rather than single pages.

• For security, pages newly added to page’s address space must be filled with

zeros. But what if page is never used? Hence “demand zeroing” — initially

mark page inaccessible so first use traps to O/S,

• “Copy-on-write” is somewhat similar: When copying a page from one address

space to another, don’t actually copy unless one process changes something,

and copy then.

• All ideas used in more-recent systems. (Example: UNIX fork() followed

by exec*() sounds like madness, but doesn’t have to be!)

Slide 10

Case Study: Linux

• Linux interesting in that it runs on a very diverse set of platforms. (And as

textbook points out, that requires compromises that mean it may not be

optimal for any of them.)

• Focus in this chapter on important aspects of virtual memory in Linux, and on

implementation for x86 architecture. (I’m almost sorry I don’t teach x86 in

CSCI 2321 — but I continue to believe it’s horrible as a first assembler

language.)

5



CSCI 3323 October 27, 2021

Slide 11

Linux — More About Address Space

• Figure 23.2 shows layout of address space. (Note in passing that this appears

to be 32-bit x86 — but textbook says x86-64 follows same plan but with

different split.)

• Note similarity to VAX/VMS address space — user portion, kernel portion

(though split is 3G/1G rather than 2G/2G), with kernel portion shared among

processes.

(Picture is somewhat at odds with results of experiment, in which highest

address on stack looks like it would be 0x7ffffff not 0xbffffff. I

admit I don’t understand this!)

• Kernel portion further divided into “logical” and “virtual” parts.

Slide 12

Linux — Kernel Part of Address Space (Logical)

• Where most O/S data structures live. Allocate with kmalloc().

• Cannot be swapped to disk, and maps directly to lowest-numbered physical

addresses (0xC000 0000 to 0x0000 0000).

• How is this useful? Some operations — such as ones involving I/O — need

contiguous physical memory to work. Further, some (“memory-mapped I/O”)

require referencing specific physical addresses.

6



CSCI 3323 October 27, 2021

Slide 13

Linux — Kernel Part of Address Space (Virtual)

• Useful for large data structures.

• Can be swapped to disk, and need not be contiguous.

Slide 14

Linux — x86 Specifics

• Textbook says x86 architecture provides hardware-managed multi-level page

tables.

• Based on a fairly quick Web search, things are more complicated, and 32-bit

version of architecture is a segmentation/paging hybrid, though some O/S’s

don’t really make use of the segmentation aspects. As with so much about

this architecture, hardware has evolved, but architecture retains traces of its

earliest ancestors. (Link to Intel’s manual on course Web site under “Links”.

Interesting reading if you want to know more.)

• x86-64 architecture cleans that up some — paging only, for now 48-bit

addresses.

• Standard page size 4K (212) bytes. Additional page sizes (2M and even 1G

— “huge pages”) also supported. (Apparently done by merging some levels of

the page table, e.g., combining lowest levels into bigger offsets).

7



CSCI 3323 October 27, 2021

Slide 15

Linux — “Page Cache”

• Linux apparently incorporates swapping into a larger strategy for keeping

frequently-used data in physical memory, in page-size chunks:

– Data read from files via mmap().

– Other data from filesystems (files and metadata).

– Heap and storage pages (“anonymous memory” — also obtained from

mmap()).

(What about code pages? Can be handled via mmap().)

• All kept in “page cache hash table” for quicker lookup.

• Page cache tracks which pages are “dirty” (have been modified); periodically

background threads write out dirty pages, to files for file-backed data, swap

space for “anonymous data”. Done periodically or when too many pages dirty.

“Voo-doo constants”, maybe, so configurable.

• When number of free pages runs low, must evict some pages . . .

Slide 16

Linux — Page Replacement Algorithm

• Modified form of “2Q” (described in referenced paper?).

• Basic idea: LRU effective but can be subverted by common scenarios, such

as accessing all of file that fills up all or most of physical memory. What to do?

• Set up two lists: Page goes on inactive list on first access, promoted to active

list on next access. Periodically less-recently used pages moved from active

to inactive list. (Both lists ideally kept in LRU order, but impractical, so some

approximation (e.g., clock) used.) Pages on inactive list are candidates for

replacement.

• Combines best features of LRU with a way to avoid a common bad scenario.

8



CSCI 3323 October 27, 2021

Slide 17

Linux — Buffer Overflows and Security

• From CSCI 1120: C doesn’t help you avoid out-of-bounds array accesses or

use of invalid pointers. And these can even lead to “security problems”.

• How so? Local variables for function typically go on stack, as does return

address (where to return from function). Stack grows upward, so local

variables at smaller addresses — so possible to overwrite return address.

• At one time, attacker who knew enough about a program could craft non-text

input that would put its own code in the input field plus data that would

overwrite return address with code that would return not to caller but to

attacker code just read in — !!

• Classic paper (“Smashing the Stack for Fun and Profit”, referenced under

“Links” on course Web site) goes through full details of example. Cool if scary,

but . . .

Slide 18

Linux — Buffer Overflows and Security, Continued

• Attacks in classic paper don’t work any more, partly because conventions for

calling functions in x86 assembler have changed, but also because of explicit

changes:

• Some architectures now have “execute” bit on pages; if not set, code from

page can’t be executed. Idea is for it to be set for code pages, not for stack

pages.

• So attackers can’t make function return to code they just inserted — but they

can make it return somewhere else.

• “Return-oriented programming” does just that, returning to library code in

memory. (I haven’t read up, but sounds cool if scary!)

• That too can be thwarted, by not always placing parts of address space (e.g.,

code) at same location (“address space layout randomization”).

9



CSCI 3323 October 27, 2021

Slide 19

Linux — Meltdown and Spectre

• Not long ago “Meltdown” and “Spectre’ bugs made the news. They describe

ways for attackers to get access to data they shouldn’t be able to access —

and at first reading, sounds impossible, based on what you now know about

address translation.

• But trying for always more speed, chip designers make use of “speculative

execution”: E.g., loading from memory is comparatively slow, so start early to

load what you think you’ll need, and if that’s wrong then throw result away and

try again.

• Sounds good, but wrong path not taken may leave data in caches etc., and

this can expose data thought to be protected.

Slide 20

Linux — Meltdown and Spectre, Continued

• Sounds like part of the problem is having kernel data in page table for all

processes — even if not marked readable, it can be found. Could be

addressed by going back to putting kernel data in separate address space —

at performance cost.

• “Interesting time to be alive” the textbook authors say. Indeed.

10



CSCI 3323 October 27, 2021

Slide 21

Linux — Summary

• Memory management in Linux big and complicated, and many details still

murky. (I question authors’ claim about details being easy to follow, though

general ideas are manageable.)

• Interesting to note that while many details don’t exactly match more-general

discussion earlier, general ideas and principles should seem familiar.

• In fact in general my guess is that real systems start from known ideas and

then combine them and tweak them.

Slide 22

Minute Essay

• Questions?

11


