
CSCI 3323 November 8, 2021

Slide 1

Administrivia

• (By e-mail.)

Slide 2

Concurrency and Threads — A Few Words First

• Discussion of concurrency traditional topic in O/S courses.

• Favorite topic of mine because my much-neglected research is parallel

computing, and some of my most interesting courses in graduate school were

about concurrent algorithms.

• I’m apt to spend more time on the topic; good news / bad news is that this

isn’t an option this year. But it is one of the more intellectually interesting

parts of the course (as opposed to details).

1



CSCI 3323 November 8, 2021

Slide 3

Threads

• In discussion so far we’ve talked about a “process abstraction”, as one of a

set of concurrently-executing things.

• In most respects, however, this abstraction is implemented both as discussed

so far (“heavy-weight process”) and in the form of threads, are roughly the

same except they share an address space and a few other data structures

(e.g., list of open files).

• (Things get a little confused in that a system that supports threads has both

processes and threads, and details of combining them not clear: Every thread

has a containing(?) process, with an address space etc., okay. But does

every process have to contain at least one thread? More later.)

Slide 4

Threads — Basic Elements

• Each thread has a “virtual CPU”, with a place to store registers, a state

(ready, running, or blocked), etc.

• Each thread does not have its own address space; instead each can be

thought of as existing inside a process with an address space.

• Each thread does have its own stack (which rather breaks the tidy model of

memory).

2



CSCI 3323 November 8, 2021

Slide 5

Why Threads? One Reason — Parallelism

• One reason — improved performance via “parallelism”.

• Idea here is to split work into pieces that can be done at the same time and

divide among processors/cores.

• Sometimes easy (except maybe for a few details), sometimes more difficult,

sometimes just plain impossible. This is what topic of “parallel computing” is

about.

Slide 6

Why Threads? One Reason — Hiding Latency

• Way back in mainframe days, “multiprogramming” invented as a way let CPU

make progress on one program if another was blocked.

• Similarly, if one part of a computation can’t make progress, but some other

part can make progress while the first one is waiting, can set up two threads

and put blocking part in one.

• Good way to think about many currently-common applications, such as GUIs:

Useful to think of them as having a thread that waits for user input and a

thread that manages display. (Java and Scala work this way!)

3



CSCI 3323 November 8, 2021

Slide 7

Threads — Example

• This may be familiar from short discussion of multithreading in CS2?

Programs can launch threads, wait for them to finish.

• Note that exactly how program runs depends on scheduler (threads are

subject to scheduling, as processes are), so may be different every time.

And of course implications if multiple threads access shared variables . . .

Slide 8

Threads — Access to Shared Data

• Key point is that what threads execute is sequences of machine instructions;

while the instructions from Thread A execute in normal order with regard to

each other, there are no guarantees how they execute with regard to

instructions from Thread B — can be interleaved in any arbitrary order, or

even at the same time.

• If results can depend on details of scheduling — “race condition”. Not

invariably bad, but usually. (How could they be not bad . . . You may remember

that floating-point addition is not associative? This means parallelizing some

calculations effectively leads to race conditions — but if results are close that

may be acceptable.)

• Textbook illustrations are all x86, but the same thing happens in MIPS

assembler: If you think about two threads both adding to a variable, each has

to first load, then add, then store. (I have a favorite bank-balance example.)

4



CSCI 3323 November 8, 2021

Slide 9

Mutual Exclusion

• Problem of avoiding race conditions referred to as “mutual exclusion

problem”, and discussion goes back to early mainframe days, in the context of

processes rather than threads but same ideas.

• Simplest of so-called “classical IPC problems” — simplified versions of things

real programs (both applications and O/S) need to do. Edsger Dijkstra a key

player in developing these ideas (though not the only person).

• Probably this historical context is one reason concurrency still discussed in

O/S courses! O/S was first large-scale program to deal with multiple things

happening in-effect-at-the-same-time.

Slide 10

Mutual Exclusion Problem — Classical Formulation

• In many situations, we want only one process at a time to have access to

some shared resource.

• Generic/abstract version: Multiple processes, each with a “critical region”

(“critical section”):

while (true) {

do_cr(); // must be "finite"

do_non_cr(); // need not be "finite"

}

• Goal is to add something to this code such that:

1. No more than one process at a time can be “in its critical region”.

2. No process not in its critical region can block another process.

3. No process waits forever to enter its critical region.

4. No assumptions are made about how many CPUs, their speeds.

5



CSCI 3323 November 8, 2021

Slide 11

Mutual Exclusion Problem, Continued

• Various solutions possible:

– Using only hardware features always present (some notion of shared

variable).

– Using optional hardware features.

– Using “synchronization mechanisms” (abstractions that help solve this and

other problems).

• Recall that a correct solution

– Must work for more than one CPU (processor).

– Must work even in the face of unpredictable context switches — whatever

we’re doing, another process can pull the rug out from under us between

“atomic operations” (machine instructions).

Slide 12

“Atomic Operations”

• In many contexts, want to think about computation in terms of “atomic”

operations. (Name goes back to when atoms were believed to be indivisible;

idea is that an atomic operation executes as one indivisible thing, without

interference from other process or thread.)

• At hardware level, instructions are atomic, but keep in mind that one program

source line often translate to more than one instruction. Possibly worse for

load/store architectures.

• Which of the following are atomic?

– x = 1;

– x = x + 1;

– ++x;

– if (x == 0) x = 1;

(Or does it depend? On what?)

6



CSCI 3323 November 8, 2021

Slide 13

Atomic Operations, Continued

• At application level, often success of an operation depends on what can be

regarded as atomic. Examples:

• For multithreading, a key way to avoid race conditions — somehow package

up more-than-single-instruction updates, possibly including a test.

• For disk I/O operations, “journaling filesystems” package multistep operations

(e.g., assign an unused block to a file and take it out of the list of free blocks)

so they can be considered atomic. (They aren’t really, but the filesystem has

ways to recover cleanly if one is interrupted.)

Slide 14

Other Classical Problems

• Other situations in which you want one one process/thread to wait for another,

such as having one wait for another to do I/O.

• “Bounded buffer” posits collection of “producers” putting items into a

limited-size shared buffer and “consumers” taking them out, with producers

waiting if buffer full and consumers waiting if empty.

• “Dining philophers” posits — well, description is kind of silly and anthropopic,

but it’s representative of some resource sharing problems more complex than

mututal exclusion.

7



CSCI 3323 November 8, 2021

Slide 15

Minute Essay

• What other exposure have you had to multithreaded programming? I hear

that it’s presented at least briefly in CS2. How much of it has stuck with you?

Were you asked to write any programs?

• Have you had any other background in programming involving more than one

thing at a time? possibly a networked game in CS2, or something in another

context?

8


