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Administrivia

• (By e-mail.)
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Mutual Exclusion — Review/Recap

• Recall problem: Add something to generic code that enforces that only one

process at a time can be in a “critical region”. Equivalent to implementing

locks.

• Several non-working solutions proposed, then finally one approach

(Peterson’s algorithm) that at least guarantees mutual exclusion, but has

shortcomings:

• Anything that uses shared variables requires some attention on modern

hardware given how writes to RAM actually work.

• Blocking by busy-waiting might not be fair, and isn’t efficient.

• To do better, need help from hardware and from O/S (or other library).
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Sidebar: TSL Instruction

• A key problem in concurrent algorithms — “atomicity” (operations guaranteed

to execute without interference from another CPU/process). Hardware can

provide some help with this.

• E.g., “test and set lock” (TSL) instruction:

TSL registerX, lockVar

(1) copies lockVar to registerX and (2) sets lockVar to non-zero,

all as one atomic operation.

How to make this work is the hardware designers’ problem!

• Note that this is very much like textbook’s TestAndSet instruction. Most

current hardware provides similar instruction(s); textbook describes several.

Recall ll and sc from CSCI 2321.
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Proposed Solution Using TSL Instruction

• Shared variables:

int lock = 0;

Pseudocode for each process:
while (true) {

enter_cr();

do_cr();

leave_cr();

do_non_cr();

}

Assembly-language routines:
enter_cr:

TSL regX, lock

compare regX with 0

if not equal

jump to enter_cr

return

leave_cr:

store 0 in lock

return

• Does it work? Yes . . .
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Solution Using TSL Instruction, Continued

• Proposed invariant: “lock is 0 exactly when no processes in their critical

regions, and nonzero exactly when one process in its critical region.” (“Exactly

when” here means “if and only if”.)

• If this invariant holds, that means first requirement is met. (Does it hold? Next

slide.) Others met too — well, except that it might be “unfair” (some process

waits forever).

• Is this a better solution? Simpler than Peterson’s algorithm, but still involves

busy-waiting. (Also depends on hardware features that might not be present,

but these days almost all hardware has something similar.)
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Solution Using TSL Instruction, Continued

• Proposed invariant: “lock is 0 exactly when no processes in their critical

regions, and nonzero exactly when one process in its critical region.” (“Exactly

when” here means “if and only if”.)

• True initially.

• Could change when a process enters its critical region — but notice that only

happens when lock is 0.

• Also doesn’t change when a process leaves its critical region.

• So okay.
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Mutual Exclusion — Recap

• So with help from special instructions such as TSL, we have something that

mostly solves the mutual-exclusion problem — “spin lock” (because a

process/thread spins if lock not available).

• One problem — inefficient. Could address that with revision to

enter cr():
enter_cr:

TSL registerX, lockVar

compare registerX with 0

if equal, jump to ok

invoke scheduler # thread yields to another thread

jump to enter_cr

ok:

return

• But fairness still not guaranteed, and this seems pretty low-level, so might be

hard to use for more complicated problems.

• So, people have proposed various “synchronization mechanisms” —

more-abstract ways of coordinating what processes do. A key point is
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providing something that potentially makes a process wait.
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Semaphores

• History — 1965 paper by Dijkstra (possibly earlier work by Iverson, or so says

a former faculty member who knows of Iverson through his work on APL/J).

• Idea — define semaphore ADT:

– “Value” — non-negative integer.

– Two operations, both atomic:

∗ up (V) — add one to value.

∗ down (P) — block until value is nonzero, then subtract one.

• Ignoring for now how to implement this — is it useful?
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Mutual Exclusion Using Semaphores

• Shared variables:

semaphore S(1);

Pseudocode for each process:

while (true) {

down(S);

do_cr();

up(S);

do_non_cr();

}

• Proposed invariant: “S has value 1 exactly when no process in its critical

region, 0 exactly when one process in its critical region, and never has values

other than 0 or 1.”
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Mutual Exclusion Using Semaphores, Continued

• Proposed invariant again: “S has value 1 exactly when no process in its

critical region, 0 exactly when one process in its critical region, and never has

values other than 0 or 1.”

• True initially.

• Could change when a process enters its critical region — but this is

essentially exactly when a down(S) completes, so okay.

• Could change when a process leaves its critical region — but this is

essentially exactly when an up(S) completes, so okay.
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Classical IPC Problems — Review/Recap

• Problems meant to represent many commonly-occurring situations in which

processes have to coordinate in some way.

• We’ve talked about one — mutual exclusion — but there are others. Next . . .
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Bounded Buffer Problem

• (Example of slightly more complicated synchronization needs.)

• Idea — we have a buffer of fixed size (e.g., an array), with some processes

(“producers”) putting things in and others (“consumers”) taking things out.

Synchronization:

– Only one process at a time can access buffer.

– Producers wait if buffer is full.

– Consumers wait if buffer is empty.

• Example of use: print spooling (producers are jobs that print, consumer is

printer — actually could imagine having multiple printers/consumers).
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Bounded Buffer Problem, Continued

• Shared variables:

buffer B(N); // initially empty, can hold N things

Pseudocode for producer:

while (true) {

item = generate();

put(item, B);

}

Pseudocode for consumer:

while (true) {

item = get(B);

use(item);

}

• Synchronization requirements:

1. At most one process at a time accessing buffer.

2. Never try to get from an empty buffer or put to a full one.

3. Processes only block if they “have to”.
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Bounded Buffer Problem, Continued

• We already know how to guarantee one-at-a-time access. Can we extend

that?

• Three situations where we want a process to wait:

– Only one get/put at a time.

– If B is empty, consumers wait.

– If B is full, producers wait.
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Bounded Buffer Problem, Continued

• What about three semaphores?

– One to guarantee one-at-a-time access.

– One to make producers wait if B is full — so, it should be zero if B is full —

“number of empty slots”?

– One to make consumers wait if B is empty — so, it should be zero if B is

empty — “number of slots in use”?
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Bounded Buffer Problem — Solution

• Shared variables:

buffer B(N); // empty, capacity N

semaphore mutex(1);

semaphore empty(N);

semaphore full(0);

Pseudocode for producer:

while (true) {

item = generate();

down(empty);

down(mutex);

put(item, B);

up(mutex);

up(full);

}

Pseudocode for consumer:

while (true) {

down(full);

down(mutex);

item = get(B);

up(mutex);

up(empty);

use(item);

}
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Semaphores – Review

• A “synchronization mechanism” — way of controlling interaction among

processes in a more abstract way than the first few solutions to the mutual

exclusion problem.

• Semaphore as ADT:

– “Value” — non-negative integer.

– Two operations, “up” and “down”, both atomic.

• Allows for nice solution for mutual exclusion, also ability to solve more

complex problems (e.g., bounded buffer).
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Implementing Semaphores

• We want to define:

– Data structure to represent a semaphore.

– Functions up and down.

• up and down should work the way we said, and we’d like to do as little

busy-waiting as possible.
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Implementing Semaphores, Continued

• Idea — represent semaphore as integer plus queue of waiting processes

(represented as, e.g., process IDs).

• Then how should this work . . .
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Implementing Semaphores, Continued

• Variables — integer value, queue of process IDs queue.

down() {

bool zero;

enter_cr();

zero = (value == 0);

if (!zero)

value -= 1;

else

enqueue(current_process, queue);

leave_cr();

if (zero)

block(); // mark current process blocked

}

up() {

process p = null;

enter_cr();

if (empty(queue))

value += 1;

else

p = dequeue(queue);

leave_cr();

if (p != null)

unblock(p); // mark p runnable

}

• enter cr(), leave cr() as described previously.
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Sidebar: Shared Memory and Synchronization

• Solutions that rely on variables shared among processes assume that

assigning a value to a variable actually changes its value in memory (RAM),

more or less right away. Fine as a first approximation, but reality may be more

complicated, because of various tricks used to deal with relative slowness of

accessing memory:

Optimizing compilers may keep variables’ values in registers, only

reading/writing memory when necessary to preserve semantics.

Hardware may include cache, logically between CPU and memory, such that

memory read/write goes to cache rather than RAM. Different CPUs’ caches

may not be in synch (though this is something the hardware takes care of in

sensible systems?).
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Sidebar: Shared Memory and Synchronization,
Continued

• So, actual implementations need notion of “memory fence” — point at which

all apparent reads/writes have actually been done. Some languages provide

standard ways to do this; others (e.g., C!) don’t. C’s volatile (“may be

changed by something outside this code”) helps some but may not be

enough.

• Worth noting, however, that many library functions / constructs include these

memory fences as part of their APIs (e.g., Java synchronized blocks).
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Minute Essay

• Does what I’m saying about using invariants to reason about concurrent

algorithms make sense to you?

• Other questions?
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