
CSCI 3323 November 15, 2021

Slide 1

Administrivia

• (By e-mail.)

Slide 2

Mutual Exclusion — Review/Recap

• Recall problem: Add something to generic code that enforces that only one

process at a time can be in a “critical region”. Equivalent to implementing

locks.

• Several non-working solutions proposed, then finally one approach

(Peterson’s algorithm) that at least guarantees mutual exclusion, but has

shortcomings:

• Anything that uses shared variables requires some attention on modern

hardware given how writes to RAM actually work.

• Blocking by busy-waiting might not be fair, and isn’t efficient.

• To do better, need help from hardware and from O/S (or other library).

1



CSCI 3323 November 15, 2021

Slide 3

Sidebar: TSL Instruction

• A key problem in concurrent algorithms — “atomicity” (operations guaranteed

to execute without interference from another CPU/process). Hardware can

provide some help with this.

• E.g., “test and set lock” (TSL) instruction:

TSL registerX, lockVar

(1) copies lockVar to registerX and (2) sets lockVar to non-zero,

all as one atomic operation.

How to make this work is the hardware designers’ problem!

• Note that this is very much like textbook’s TestAndSet instruction. Most

current hardware provides similar instruction(s); textbook describes several.

Recall ll and sc from CSCI 2321.

Slide 4

Proposed Solution Using TSL Instruction

• Shared variables:

int lock = 0;

Pseudocode for each process:
while (true) {

enter_cr();

do_cr();

leave_cr();

do_non_cr();

}

Assembly-language routines:
enter_cr:

TSL regX, lock

compare regX with 0

if not equal

jump to enter_cr

return

leave_cr:

store 0 in lock

return

• Does it work? Yes . . .

2



CSCI 3323 November 15, 2021

Slide 5

Solution Using TSL Instruction, Continued

• Proposed invariant: “lock is 0 exactly when no processes in their critical

regions, and nonzero exactly when one process in its critical region.” (“Exactly

when” here means “if and only if”.)

• If this invariant holds, that means first requirement is met. (Does it hold? Next

slide.) Others met too — well, except that it might be “unfair” (some process

waits forever).

• Is this a better solution? Simpler than Peterson’s algorithm, but still involves

busy-waiting. (Also depends on hardware features that might not be present,

but these days almost all hardware has something similar.)

Slide 6

Solution Using TSL Instruction, Continued

• Proposed invariant: “lock is 0 exactly when no processes in their critical

regions, and nonzero exactly when one process in its critical region.” (“Exactly

when” here means “if and only if”.)

• True initially.

• Could change when a process enters its critical region — but notice that only

happens when lock is 0.

• Also doesn’t change when a process leaves its critical region.

• So okay.

3



CSCI 3323 November 15, 2021

Slide 7

Mutual Exclusion — Recap

• So with help from special instructions such as TSL, we have something that

mostly solves the mutual-exclusion problem — “spin lock” (because a

process/thread spins if lock not available).

• One problem — inefficient. Could address that with revision to

enter cr():
enter_cr:

TSL registerX, lockVar

compare registerX with 0

if equal, jump to ok

invoke scheduler # thread yields to another thread

jump to enter_cr

ok:

return

• But fairness still not guaranteed, and this seems pretty low-level, so might be

hard to use for more complicated problems.

• So, people have proposed various “synchronization mechanisms” —

more-abstract ways of coordinating what processes do. A key point is

Slide 8

providing something that potentially makes a process wait.

4



CSCI 3323 November 15, 2021

Slide 9

Semaphores

• History — 1965 paper by Dijkstra (possibly earlier work by Iverson, or so says

a former faculty member who knows of Iverson through his work on APL/J).

• Idea — define semaphore ADT:

– “Value” — non-negative integer.

– Two operations, both atomic:

∗ up (V) — add one to value.

∗ down (P) — block until value is nonzero, then subtract one.

• Ignoring for now how to implement this — is it useful?

Slide 10

Mutual Exclusion Using Semaphores

• Shared variables:

semaphore S(1);

Pseudocode for each process:

while (true) {

down(S);

do_cr();

up(S);

do_non_cr();

}

• Proposed invariant: “S has value 1 exactly when no process in its critical

region, 0 exactly when one process in its critical region, and never has values

other than 0 or 1.”

5



CSCI 3323 November 15, 2021

Slide 11

Mutual Exclusion Using Semaphores, Continued

• Proposed invariant again: “S has value 1 exactly when no process in its

critical region, 0 exactly when one process in its critical region, and never has

values other than 0 or 1.”

• True initially.

• Could change when a process enters its critical region — but this is

essentially exactly when a down(S) completes, so okay.

• Could change when a process leaves its critical region — but this is

essentially exactly when an up(S) completes, so okay.

Slide 12

Classical IPC Problems — Review/Recap

• Problems meant to represent many commonly-occurring situations in which

processes have to coordinate in some way.

• We’ve talked about one — mutual exclusion — but there are others. Next . . .

6



CSCI 3323 November 15, 2021

Slide 13

Bounded Buffer Problem

• (Example of slightly more complicated synchronization needs.)

• Idea — we have a buffer of fixed size (e.g., an array), with some processes

(“producers”) putting things in and others (“consumers”) taking things out.

Synchronization:

– Only one process at a time can access buffer.

– Producers wait if buffer is full.

– Consumers wait if buffer is empty.

• Example of use: print spooling (producers are jobs that print, consumer is

printer — actually could imagine having multiple printers/consumers).

Slide 14

Bounded Buffer Problem, Continued

• Shared variables:

buffer B(N); // initially empty, can hold N things

Pseudocode for producer:

while (true) {

item = generate();

put(item, B);

}

Pseudocode for consumer:

while (true) {

item = get(B);

use(item);

}

• Synchronization requirements:

1. At most one process at a time accessing buffer.

2. Never try to get from an empty buffer or put to a full one.

3. Processes only block if they “have to”.

7



CSCI 3323 November 15, 2021

Slide 15

Bounded Buffer Problem, Continued

• We already know how to guarantee one-at-a-time access. Can we extend

that?

• Three situations where we want a process to wait:

– Only one get/put at a time.

– If B is empty, consumers wait.

– If B is full, producers wait.

Slide 16

Bounded Buffer Problem, Continued

• What about three semaphores?

– One to guarantee one-at-a-time access.

– One to make producers wait if B is full — so, it should be zero if B is full —

“number of empty slots”?

– One to make consumers wait if B is empty — so, it should be zero if B is

empty — “number of slots in use”?

8



CSCI 3323 November 15, 2021

Slide 17

Bounded Buffer Problem — Solution

• Shared variables:

buffer B(N); // empty, capacity N

semaphore mutex(1);

semaphore empty(N);

semaphore full(0);

Pseudocode for producer:

while (true) {

item = generate();

down(empty);

down(mutex);

put(item, B);

up(mutex);

up(full);

}

Pseudocode for consumer:

while (true) {

down(full);

down(mutex);

item = get(B);

up(mutex);

up(empty);

use(item);

}

Slide 18

Semaphores – Review

• A “synchronization mechanism” — way of controlling interaction among

processes in a more abstract way than the first few solutions to the mutual

exclusion problem.

• Semaphore as ADT:

– “Value” — non-negative integer.

– Two operations, “up” and “down”, both atomic.

• Allows for nice solution for mutual exclusion, also ability to solve more

complex problems (e.g., bounded buffer).

9



CSCI 3323 November 15, 2021

Slide 19

Implementing Semaphores

• We want to define:

– Data structure to represent a semaphore.

– Functions up and down.

• up and down should work the way we said, and we’d like to do as little

busy-waiting as possible.

Slide 20

Implementing Semaphores, Continued

• Idea — represent semaphore as integer plus queue of waiting processes

(represented as, e.g., process IDs).

• Then how should this work . . .

10



CSCI 3323 November 15, 2021

Slide 21

Implementing Semaphores, Continued

• Variables — integer value, queue of process IDs queue.

down() {

bool zero;

enter_cr();

zero = (value == 0);

if (!zero)

value -= 1;

else

enqueue(current_process, queue);

leave_cr();

if (zero)

block(); // mark current process blocked

}

up() {

process p = null;

enter_cr();

if (empty(queue))

value += 1;

else

p = dequeue(queue);

leave_cr();

if (p != null)

unblock(p); // mark p runnable

}

• enter cr(), leave cr() as described previously.

Slide 22

Sidebar: Shared Memory and Synchronization

• Solutions that rely on variables shared among processes assume that

assigning a value to a variable actually changes its value in memory (RAM),

more or less right away. Fine as a first approximation, but reality may be more

complicated, because of various tricks used to deal with relative slowness of

accessing memory:

Optimizing compilers may keep variables’ values in registers, only

reading/writing memory when necessary to preserve semantics.

Hardware may include cache, logically between CPU and memory, such that

memory read/write goes to cache rather than RAM. Different CPUs’ caches

may not be in synch (though this is something the hardware takes care of in

sensible systems?).

11



CSCI 3323 November 15, 2021

Slide 23

Sidebar: Shared Memory and Synchronization,
Continued

• So, actual implementations need notion of “memory fence” — point at which

all apparent reads/writes have actually been done. Some languages provide

standard ways to do this; others (e.g., C!) don’t. C’s volatile (“may be

changed by something outside this code”) helps some but may not be

enough.

• Worth noting, however, that many library functions / constructs include these

memory fences as part of their APIs (e.g., Java synchronized blocks).

Slide 24

Minute Essay

• Does what I’m saying about using invariants to reason about concurrent

algorithms make sense to you?

• Other questions?

12


