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Administrivia

• (By e-mail.)

Slide 2

Synchronization Mechanisms — Recap/Review

• “Synchronization mechanisms” — more-abstract ways of coordinating what

processes do. A key point is providing something that potentially makes a

process wait.

• So far — semaphores (as an ADT, how they can be used, how to implement).
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Another Synchronization Mechanism — Monitors

• History — Hoare (1975) and Brinch Hansen (1975).

• Idea — combine synchronization and object-oriented paradigm.

• A monitor consists of

– Data for a shared object (and initial values).

– Procedures — only one at a time can run.

• “Condition variable” ADT allows us to wait for specified conditions (e.g., buffer

not empty):

– Value — queue of suspended processes.

– Operations:

∗ Wait — suspend execution (and release mutual exclusion).

∗ Signal — if there are processes suspended, allow one to continue. (if

not, signal is “lost”). Some choices about whether signalling process

continues, or signalled process awakens right away.
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Bounded Buffer Problem, Revisited

• Define a bounded buffer monitor with a queue and insert and

remove procedures.

• Shared variables:

bounded_buffer B(N);

Pseudocode for producers:

while (true) {

item = generate();

B.insert(item);

}

Pseudocode for consumers:

while (true) {

B.remove(item);

use(item);

}
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Bounded-Buffer Monitor

• Data:

buffer B(N); // N constant, buffer empty

int count = 0;

condition not_full;

condition not_empty;

• Procedures:

insert(item itm) {

while (count == N)

wait(not_full);

put(itm, B);

count += 1;

signal(not_empty);

}

remove(item &itm) {

while (count == 0)

wait(not_empty);

itm = get(B);

count -= 1;

signal(not_full);

}

• Does this work?
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Bounded-Buffer Monitor, Continued

• Does this work? Yes:

• Atomicity ensured by how monitors work (one procedure at a time).

• Wait/signal on two condition variables ensures that we only get if buffer is not

empty and put if it’s not full.

Note: Some published solutions use if rather than while. In principle,

should work, but some implementations generate “spurious wakeups”, and

they recommend always testing in a loop this way.
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Implementing Monitors

• Requires compiler support, so more difficult to implement than (e.g.)

semaphores.

• Java (and Scala)’s methods for thread synchronization are based on

monitors . . .
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Java’s Adaptation of the Monitor Idea

• Data for monitor is instance variables (data for class).

• Procedures for monitor are synchronized methods/blocks — mutual

exclusion provided by implicit object lock.

• wait, notify, notifyAll methods.

• No condition variables, but above methods provide more or less equivalent

functionality.

Note that the language specs for Java allow spurious wake-ups. So “best

practice” is to wait() in a loop, re-checking the desired condition.
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Synchronization Mechanisms — Recap

• Low-level ways of synchronizing — using shared variables only, using TSL

instruction. All seem tedious and inefficient.

• “Synchronization mechanisms” are more-abstract ways of coordinating what

processes do. A key point is providing something that potentially makes a

process wait. Examples include semaphores, monitors, message passing

(not discussed this year but you can possibly imagine the key idea —

processes that don’t share memory can coordinate by sending each other

messages, waiting for them to arrive).

Often built using something lower-level.
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Classical IPC Problems — Review

• Literature (and textbooks) on operating systems talk about “classical

problems” of interprocess communication.

• Idea — each is an abstract/simplified version of problems O/S designers

actually need to solve. Also a good way to compare ease-of-use of various

synchronization mechanisms.

• Examples so far — mutual exclusion, bounded buffer.

• Other examples sometimes described in silly anthropomorphic terms, but

underlying problem is sometimes a simplified version of something “real”.
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Dining Philosophers Problem

• Scenario (originally proposed by Dijkstra, 1972):

– Five philosophers sitting around a table, each alternating between thinking

and eating.

– Between every pair of philosophers, a fork; philosopher must have two

forks to eat.

– So, neighbors can’t eat at the same time, but non-neighbors can.

• Why is this interesting or important? It’s a simple example of something more

complex than mutual exclusion — multiple shared resources (forks),

processes (philosophers) must obtain two resources together. (Why five?

smallest number that’s “interesting”.)
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Dining Philosophers — Naive Solution

• Naive approach — we have five mutual-exclusion problems to solve (one per

fork), so just solve them.

• Does this work? No — deadlock possible.
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Dining Philosophers — Simple Solution

• Another approach — just use a solution to the mutual exclusion problem to let

only one philosopher at a time eat.

• Does this work? Well, it “works” w.r.t. meeting safety condition and no

deadlock, but it’s too restrictive.
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Dining Philosophers — Dijkstra Solution

• Another approach — use shared variables to track state of philosophers and

semaphores to synchronize.

• I.e., variables are

– Array of five state variables (states[5]), possible values

thinking, hungry, eating. Initially all thinking.

– Semaphore mutex, initial value 1, to enforce one-at-a-time access to

states.

– Array of five semaphores self[5], initial values 0, to allow us to make

philosophers wait.

• And then the code is somewhat complex . . .
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Dining Philosophers — Code

• Shared variables as on previous slide.

Pseudocode for philosopher i:
while (true) {

think();

down(mutex);

state[i] = hungry;

test(i);

up(mutex);

down(self[i]);

eat();

down(mutex);

state[i] = thinking;

test(right(i));

test(left(i));

up(mutex);

}

Pseudocode for function:
void test(i)

{

if ((state[left(i)] != eating) &&

(state[right(i)] != eating) &&

(state[i] == hungry))

{

state[i] = eating;

up(self[i]);

}

}
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Dining Philosophers — Dijkstra Solution Works?

• Could there be problems with access to shared state variables?
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“Solution Works”, Continued

• Could there be problems with access to shared state variables?

• No (because all accesses are “protected” by mutual-exclusion semaphore).

• Do we guarantee that neighbors don’t eat at the same time?
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“Solution Works”, Continued

• Do we guarantee that neighbors don’t eat at the same time?

• Yes:

Semaphore self[i] has value 1 only when it’s safe for philosopher i to

eat — either when it became hungry neither neighbor was eating, or a

neighbor that was eating stopped eating and did an “up” on self[i].

• Do we allow non-neighbors to eat at the same time?
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“Solution Works”, Continued

• Do we allow non-neighbors to eat at the same time?

• Yes.

• Could we deadlock?
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“Solution Works”, Continued

• Could we deadlock?

• No:

The “critical region” for semaphore mutex is finite, so no deadlock on that.

We only suspend on self[i] if a neighbor is eating — and it will

eventually stop and perform an “up”.

• Does a hungry philosopher always get to eat eventually?
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“Solution Works”, Continued

• Does a hungry philosopher always get to eat eventually?

• Sadly, no. Two philosophers can starve the one between them, if things are

timed just right (or wrong).

• This is fixable . . .
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Dining Philosophers — Chandy/Misra Solution

• Original solution allows for scenarios in which one philosopher “starves”

because its neighbors alternate eating while it remains hungry.

• Briefly, we could improve this by maintaining a notion of “priority” between

neighbors, and only allow a philosopher to eat if (1) neither neighbor is eating,

and (2) it doesn’t have a higher-priority neighbor that’s hungry. After a

philosopher eats, it lowers its priority relative to its neighbors.
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Other Classical Problems

• Readers/writers (in textbook).

• Sleeping barber, drinking philosophers, . . .

• Advice — if you ever have to solve problems like this “for real”, read the

literature . . .
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Minute Essay

• Questions?
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