
CSCI 3323 December 1, 2021

Slide 1

Administrivia

• (Via e-mail.)

Slide 2

Threads and Processes

• In the first lecture on threads I said interaction between threads and

processes seemed murky to me? I did some Web-searching . . .

• Probably best to think in terms of processes being containers for threads, with

every process containing at least one thread.

1



CSCI 3323 December 1, 2021

Slide 3

Implementing Threads Without O/S Support

• Something the textbook doesn’t mention: Threads can be implemented totally

without O/S involvement — “in user space” (as opposed to “in kernel space”):

• O/S only knows about processes; all support for multiple threads happens via

libraries.

• Likely more efficient, but has some drawbacks:

• If a thread blocks, it may do so in a way that blocks the whole process.

• Preemptive multitasking difficult/impossible without O/S involvement, as is

using multiple CPUs.

• Fairly widely used as first implementation of threads (e.g., in Java).

Slide 4

Multithreaded Programming with “P-Threads”

• POSIX (Portable Operating System Interface) defines interface for

multithreaded programming — variously called P-Threads, Pthreads,

pthreads.

• Fairly primitive, but likely to be found on wide range of systems.

• A quick tour . . . (Also, I posted on the course Web site some examples you

can download and play with.)

2



CSCI 3323 December 1, 2021

Slide 5

P-Threads — Basics

• Declare threads as opaque data type pthread t.

• Create with pthread create() (refer to man page).

• Syntax is ugly ugly, but very C-idiomatic:

Specify function thread should run with function pointer. Pass data to it with

single parameter of type void *.

• Thread runs until it calls pthread exit() (preferred) or exits.

• Creating thread can wait for thread to finish with pthread join.

• “Hello world” example (under “sample programs” on course Web site).

Slide 6

P-Threads — Locks

• Declare as opaque data type pthread mutex t.

• Initialize, clean up with pthread mutex init();

pthread mutex destroy().

• Lock, unlock with pthread mutex lock(),

pthread mutex unlock().

• Semi-real-world example of use: Multithreaded program to estimate π with

numerical integration (under “sample programs” on course Web site).

3



CSCI 3323 December 1, 2021

Slide 7

P-Threads — Semaphores

• Opaque data type sem t.

• Initialize, clean up with sem init(), sem destroy().

• Post (up()) with sem post().

• Wait (down()) with sem wait().

• Example: Semaphore-based solution to bounded buffer problem (under

“sample programs” on course Web site).

Slide 8

P-Threads — Condition Variables

• Opaque data type pthread cond t.

• Initialize, clean up with pthread cond init(),

pthread cond destroy().

• Wait with pthread cond wait().

• Signal with pthread cond signal().

• Can combine with locks to implement the “monitors” idea.

• Example: Monitor-based solution to bounded buffer problem (under “sample

programs” on course Web site).

4



CSCI 3323 December 1, 2021

Slide 9

Minute Essay

• Questions? Do the examples make sense?

5


