
CSCI 3323 January 19, 2022

Slide 1

Administrivia

• Reading Quiz 2 posted; due at end of the week.

• Homework 1 posted; due next Monday. Separated into two parts: 1a is written

problems; 1b is programming problem.

Slide 2

Limited Direct Execution — Recap

• First an unrelated bit of usage/terminology: I’ll use O/S to mean operating

system henceforth!

• “Direct execution” means as opposed to, say, emulation.

• “Limited” in that we want to do something to ensure that the O/S can “defend

itself” and also protect processes from each other.

Note that this is only even possible if hardware provides some support. May

explain why early O/S’s for PCs didn’t always provide this kind of safety (as in

my old war story!).

1



CSCI 3323 January 19, 2022

Slide 3

Limited Direct Execution — Review/Clarification

• Textbook figure 6.2 very helpful, but I’m skeptical of some details — seems to

indicate that O/S always returns to caller after system call, but clearly that

can’t be true if sometimes it terminates the process!

• “Trap table” is a name I had not encountered before, and I wonder about the

name. Could it be specific to x86?

• More broadly: System calls (whatever the name is — trap, MIPS syscall,

etc.) are a type of interrupt. There are other kinds of interrupts. Part of the

interaction between the O/S and the hardware is the address(es) of handlers

for various kinds of interrupts — possibly only one, or possibly different ones

for different interrupts. Details might vary among architectures, but in general,

textbook is (as far as I know) right that the O/S has to set this up at boot time

— if nothing else, put its code at the hardware-specified fixed address.

Slide 4

Limited Direct Execution — Review/Clarification,
Continued

• Textbook figure 6.3 also helpful, though initially I was somewhat skeptical

about details being applicable to all O/S’s and architectures.

However, on reflection it makes sense to talk about two separate save/restore

operations:

If the scheduler says “keep running the interrupted process” then there’s only

a need to restore any machine state the interrupt handler messed up. If it

says “switch processes” then more may be needed.

• In any case, in my usage (and I think this is standard), “context switch” usually

refers to what happens when the O/S switches from one process to another.

2



CSCI 3323 January 19, 2022

Slide 5

“What About Concurrency?” Indeed

• Last section in the chapter on limited direct execution is well-titled. Very

complicated topic, and not a bad idea to address it later and not as part of a

discussion of “process management”, as some textbooks do.

• For now worth mentioning that indeed the question of what happens in the

case of nested(?) interrupts is interesting. Two points:

• They complicate things enormously (like recursion and how it can overflow

the stack).

• Could fix that by disabling further interrupts until we finish one. But that might

mean missing one.

So what we do while interrupts disabled should be short!

• Also, as I understand things, some things that might generate interrupts will

keep trying until they get an “acknowledged” response.

Slide 6

Concurrency — One More Thing

• A key problem — how to ensure that a sequence of actions happens, or

appears to happen, as one “atomic” thing — i.e., without interference from

anything else.

• This is what the textbook was getting at in talking about “atomically” — but I

found their explanation unclear and possibly misleading.

• From an application programmer’s point of view, not guaranteeing atomicity of

a sequence of operations can lead to race conditions, which can be solved via

“locks”.

• Actually implementing locks is not as easy as it might sound! (Later.)

3



CSCI 3323 January 19, 2022

Slide 7

Scheduling — Overview

• Textbook likes to distinguish between “mechanisms” and “policies”. (And it is

usually a good thing to separate them.)

• Previous chapters in this part have been about mechanisms for virtualizing

the CPU. Some (which process to run next) require decision-making — i.e.(?),

involve policies.

• (Textbook says the question of scheduling has a history before computers.

Interesting!)

• Many policies possible; many have been tried over the years.

Slide 8

Scheduling — Simple View

• Scheduling algorithms (textbook calls them disciplines) usually based on

“jobs” (units of work — name goes back to batch systems, where users

submitted “jobs” to system operator, and there was no notion of interactive

users).

• Textbook lays out some simplifying assumptions. I say we can start with

slightly less restrictive ones:

– Each job arrives at some predefined time.

– Each job runs for some fixed predefined amount of time.

– Once started, a job runs to completion (so, no switching back and forth

among processes).

– Jobs use only the CPU (i.e., no I/O).

4



CSCI 3323 January 19, 2022

Slide 9

Scheduling Algorithms — Metrics

• Useful to be able to compare different algorithms/policies/disciplines.

• A simple one is based on “turnaround time” (completion time minus arrival

time) for jobs. Average turnaround time could be a simple metric for

comparing.

• (To be continued.)

Slide 10

Minute Essay

• Are you finding the reading quizzes useful or interesting?

5


