
CSCI 3323 October 3, 2022

Slide 1

Administrivia

• Reminder: Homework 1a, 1b due Friday (was today but I’m allowing two more

days because of lack of office hours).

• As noted in e-mail, reading quiz 1 graded and sample solution and grades

uploaded. I was generous with points, so I say worth looking at sample

solution even if you did well.

• More assignments coming soon.

Slide 2

CPU Scheduling — Review/Recap

• Several situations in which we need to, or might want to, switch between

processes.

• Nuts and bolts of how — “mechanism” that doesn’t change. What changes

are the decisions — “policy”.

• Which policy is best? Depends on several factors — workload, what we mean

by “best” (“metric”).

• Discussion in terms of “jobs” and starts with many unrealistic assumptions,

later relaxed one by one.

1



CSCI 3323 October 3, 2022

Slide 3

Simple Scheduling Algorithms

• Previous class: FCFS, SJF, SJF with preemption, round robin.

• Two more the textbook doesn’t discuss . . .

Slide 4

Priority Scheduling

• Basic ideas:

– Keep a queue of ready processes, as before.

– Assign a priority to each process.

– When a process starts (or, if we also allow for blocking, when it becomes

unblocked), add it to the end of the queue.

– Switch when the running process exits (or blocks), or possibly when a

process starts. (I.e., preemption may be allowed.)

– Next process is the one with the highest priority.

• Points to consider:

– What happens to low-priority processes? (So, maybe we should change

priorities sometimes?)

– How do we decide priorities? (external considerations versus internal

characteristics)

2



CSCI 3323 October 3, 2022

Slide 5

Multiple-Queue Scheduling

• Basic idea — variant on priority scheduling:

– Divide processes into “priority classes”.

– When picking a new process, pick one from the highest-priority class with

ready processes.

– Within a class, use some other algorithm to decide (round-robin, e.g.).

– Optionally, periodically lower processes’ priorities.

• If we let the algorithm manage priorities, then we have . . .

Slide 6

Multi-Level Feedback Queue Scheduling

• Same idea as MLQ, just with some details specified — how priorities are

initially set and how they change.

• Goal is to balance good response time and good turnaround time, sometimes

at odd.

• Key idea is one used in many contexts in computer science: It often works to

assume that the near future will be much like the recent past.

• How this applies: A process that hasn’t had long CPU bursts recently won’t

start having them in the near future.

• Textbook goes into some detail; I’ll skip for now, except to note: “Gaming the

system” (to get more than one’s share of computing resources) is a real thing!

3



CSCI 3323 October 3, 2022

Slide 7

“Fair Share” Algorithms

• (Skim these too for now.)

• Lottery scheduling:

Give each process one or more “lottery tickets” — more or fewer depending

on its priority (so to speak); pick one at random to decide who’s next.

• Guaranteed scheduling (as used in Linux Completely Fair Share?):

“Guarantee” each process (of N) 1/N of the CPU cycles; (try to) schedule to

make this true.

Calculate, for each process, fraction of the time it has had the CPU in its

lifetime, fraction it “should” have had; choose process for which actual time /

entitled time is smallest.

Slide 8

Sidebar — Simulating Scheduling Algorithms

• Can be helpful in understanding how these algorithms work to simulate what

they do given a particular sequence of inputs.

• Example — batch system with the following jobs.

job ID running time arrival time

A 6 0

B 4 0

C 10 0

D 2 2

Asked to compute turnaround times for all jobs using FCFS, what would you

do . . .

4



CSCI 3323 October 3, 2022

Slide 9

Minute Essay

• Questions? How are you doing with the homework?

5


