
CSCI 3366 (Introduction to Parallel and Distributed Processing)
Spring 2001

Homework 3

Assigned: March 7, 2001.

Due: March 22, 2001.

Credit: 40 points.

Note: The HTML version of this document may contain hyperlinks. In this version,
hyperlinks are represented by showing both the link text, formatted like this, and the
full URL as a footnote.

Contents

1 Overview 1

2 Details 1
2.1 The starter program . 1
2.2 What you are to do, part 1: Coding . 2
2.3 What you are to do, part 2: Running your program 2
2.4 Collaboration . 3

3 Helpful hints 3
3.1 The bucket sort algorithm . 3
3.2 Some potentially useful STL functions . 3
3.3 Cautionary comments and miscellaneous tips . 3

4 What to turn in 4

1 Overview

The textbook discusses an algorithm called “bucket sort” for using multiple processes to sort a
list of numbers. For this assignment, your mission will be to implement this algorithm to sort an
array of integers and compare its performance with that of a sequential (one-process) sort. Because
reading numbers in and printing them out is tedious, we will generate the numbers to sort using a
random number generator, and rather than printing them out we will compare the results to the
results of sorting using a sequential sort. We will time only the part of the program that performs
the bucket sort, allowing reasonable comparisons.

2 Details

2.1 The starter program

For this assignment, I have written an MPI main program (in C++ this time) that accepts as
a command-line argument a number N representing the size of the array to sort. The program

1

CSCI 3366 Homework 3 Spring 2001

generates an array of N integers, sorts it, and compares the results to a “correct” sort. It also times
the sorting step and prints the results. The actual sorting is done in functions masterProcess()

(running in process 0) and slaveProcess() (running in all other processes). As currently written,
the slaveProcess() function does nothing, and all the work of sorting is done in masterProcess()

— i.e., the program is currently a sequential sort.

You can obtain code for the starter program by downloading the following files:

• bsort.cc1 — code for the main program, plus function declarations for masterProcess() and
slaveProcess().

• masterslave.cc2 — definitions (code) for masterProcess() and slaveProcess().

• Makefile.bsort3 — a custom Makefile for the bsort program.

To compile the program, use the command

make -f Makefile.bsort bsort

Run the executable (named bsort) as you would run any other MPI program with a command-line
argument; e.g., to run it with one process and sorting 1000 numbers, use this command:

mpirun -np 1 bsort 1000

The provided code also includes some examples of adding “debug print” statements that can be
included/excluded at compile time (look up #ifdef in a C/C++ textbook to learn more about
this). By default, these statements are excluded; to include them, compile as follows:

make -f Makefile.bsort OPTFLAGS=-DDEBUG bsort

2.2 What you are to do, part 1: Coding

You are to replace the contents of masterProcess() and slaveProcess() with code to implement
the bucket sort algorithm described in the textbook. You should not make changes in the main
program; the main program as currently written tests the correctness of the sorting operation and
so will serve as a demonstration that your code to perform the sort works properly. So, you will
change only file masterslave.cc, not bsort.cc. Comments in file masterslave.cc describe the
parameters to the two functions you are to modify. Of course, you should feel free to add additional
functions and/or #include statements. Be sure your program works for any number of processes
(not just, for example, if the number of processes is a power of 2).

2.3 What you are to do, part 2: Running your program

Once you have your code producing correct results (as reported by the main program), run it
for varying values of N and for varying numbers of processes, and compare execution times with
execution times for the original program. Ideally execution time for your code using one process will
be not much worse than execution time of the original program for the same value of N , and will
decrease as you increase the number of processes. Also, your code should perform better relative to
the original code for larger values of N . Experiment to see if this appears to be the case. Record at
least half a dozen observations (timing results for sorting N numbers with P processes, compared
to using the original program to sort N numbers).

1http://www.cs.trinity.edu/~bmassing/CS3366_2001spring/Homeworks/HW03/Problems/bsort.cc
2http://www.cs.trinity.edu/~bmassing/CS3366_2001spring/Homeworks/HW03/Problems/masterslave.cc
3http://www.cs.trinity.edu/~bmassing/CS3366_2001spring/Homeworks/HW03/Problems/Makefile.bsort

2

CSCI 3366 Homework 3 Spring 2001

2.4 Collaboration

For this assignment, you may work with one other person in the class. If you do, the two of you
should submit only one copy of your solution. Be sure both your names appear on this solution.

3 Helpful hints

3.1 The bucket sort algorithm

See chapter 4 of the textbook for a discussion of the algorithm. Two versions are presented, one in
which each process gets a copy of all N numbers and one in which each process gets only N/P of
them. You can choose to implement either version; my experiments suggest that the second one is
more work to implement but performs somewhat better.

One thing to watch out for in doing such comparisons: You should be running both programs
(your parallel one and the original one) on similar machines. That is, if you are logged into one of
the Janus machines, but you are running the parallel program using the Dwarf machines, execution
times may not be comparable.

3.2 Some potentially useful STL functions

Some of you may be familiar with the C++ Standard Template Library and its functions. The
provided code makes use of two of them that you also may find useful:

• sort() sorts the elements of a container (the STL generic term for arrays, lists, vectors, etc.)
into a desired order. To use it to sort array nums of size N in non-descending order, write

sort(nums, nums+N)

• copy() copies elements from one container to another. To use it to copy N elements from
array source to array dest, write

sort(source, source+N, dest)

A good Web source of detailed information about this library is SGI’s online Standard Template
Library (STL) Programmer’s Guide4.

3.3 Cautionary comments and miscellaneous tips

• P (the number of processes) might not evenly divide N . Your code should be prepared to
cope with this.

• Figuring out which bucket a particular number belongs in requires you to work the minimum
and maximum values allowed for the numbers. These are provided to function masterProcess()

as parameters minVal and maxVal. Be aware that these numbers could be the smallest and
largest possible integers, so it may not be possible to compute the number of possible values
(maxVal - minVal + 1) using integer arithmetic. (Think about why not.) It is probably
safest to do the needed calculations using doubles and then round the result back to an int

using the ceil() and/or floor() functions.

4http://www.sgi.com/tech/stl/

3

CSCI 3366 Homework 3 Spring 2001

• In collecting timing observations, be sure all the machines you are using are about equally
fast; otherwise comparisons between the original program and your parallel program will not
be very meaningful. A way to do this (to the best of my knowledge) is to be sure the machines
you are using for the parallel program are the same “type” (Janusxx, Xenaxx, Dwarfx) as the
machine you are using for the original program. Recall that you can specify what machines
MPI is to use for running your parallel program by putting their names in a text file, say
MPIhosts, and then running the program with a command such as this one:

mpirun -np 2 -machinefile MPIhosts bsort 1000

• Also note that in collecting timing information you will need two versions of the program
bsort. One way to avoid filename conflicts between the two programs is to put each in a
separate directory, with each directory having a copy of files bsort.cc, masterslave.cc,
Makefile.bsort, executable bsort, etc.

4 What to turn in

Submit your revised version of source file masterslave.cc, plus a text file containing your timing
observations (as described in the “Details” section above), by e-mail as described in the Guidelines
for Programming Assignments5, using a subject header of “cs3366 hw 3”.

You do not need to submit file bsort.cc (you didn’t change it anyway, right?). Please submit the
timing observations as a plain text file.

5http://www.cs.trinity.edu/~bmassing/CS3366_2001spring/Notes/pgmguidelines/index.html

4

