
CSCI 3366 (Introduction to Parallel and Distributed Processing)
Spring 2001

Homework 4

Assigned: April 12, 2001.

Due: April 24, 2001.

Credit: 20 points.

Note: The HTML version of this document may contain hyperlinks. In this version,
hyperlinks are represented by showing both the link text, formatted like this, and the
full URL as a footnote.

Contents

1 Overview 1

2 Details 1
2.1 Program input and output . 1
2.2 Choice of programming language/library . 2
2.3 A starter program . 2
2.4 Running the program . 2
2.5 Collaboration . 2

3 Helpful hints, etc. 3
3.1 Sample programs to look at . 3
3.2 Cautionary comments . 3

4 What to turn in 3

1 Overview

The variance of a set of N numbers a0, a1, . . . , aN−1 is defined to be the sum

(a0 − avg)2 + (a1 − avg)2 + · · ·+ (aN − avg)2

where avg is the average of a0, a1, . . . , aN−1.

For this assignment, you are to write a multi-threaded program to compute the variance of a set
of numbers. The textbook discusses using multiple threads to speed up the calculation of the sum
of a set of numbers; it is not difficult to extrapolate from this discussion to an approach for using
multiple threads to speed up calculating the variance of a set of numbers, if you break down the
calculation into two steps:

1. Compute the average of the input numbers, using multiple threads to speed up the required
calculation of the sum of the numbers.

2. Compute the variance as defined above, using multiple threads to speed up the calculation.

1

CSCI 3366 Homework 4 Spring 2001

2 Details

2.1 Program input and output

Your program should take two command-line arguments:

1. The number of threads to use (call this P). This argument is required.

2. The number of input numbers to generate (call this N). This argument is optional.

If the program is started with one command-line argument (P), it should read its input numbers
from standard input, continuing to read until end-of-file is encountered. It should accept any
number of input numbers. Floating-point inputs are okay.

If the program is started with two command-line arguments (P and N), it should generate N input
numbers using any reasonable technique for generating random numbers.

In either case, once it has read or generated its input numbers, the program should compute their
variance and print the following output:

• The computed variance.

• The time required to compute the variance, from just after the input number are read/generated
until after the variance has been computed.

2.2 Choice of programming language/library

You can write your program either (i) in C++ or C, using the POSIX threads library functions as we
have been doing in class, or (ii) in Java using Java’s built-in support for multi-threading. Whichever
language you use, be sure your program compiles and executes correctly on the department’s Linux
machines.

2.3 A starter program

So that you do not have to write the tedious and non-parallel parts of this program, I am providing a
sequential program that performs the required calculations. You can find it in variance.cc1. To com-
pile and run this program, you will also need the timer() function, which is in file threads-timer.h2.

(Obviously this program will not help you much if you write your program in Java. Such is life.)

2.4 Running the program

Once you have confirmed that your program is operating correctly (for small numbers of inputs),
try running it for a large number of generated inputs and varying values of P (number of threads).
Record at least half a dozen observations (different combinations of N and P) to see how run-
ning time varies with these two variables. Also record which machine you performed these ex-
periments on. You may find it interesting to see whether multi-threading can help even if you
have more threads than processors. FYI, machines known to have multiple processors include
SnowWhite.CS.Trinity.Edu (4 processors) and the Dwarfn.CS.Trinity.Edu machines (2 proces-
sors each).

1http://www.cs.trinity.edu/~bmassing/CS3366_2001spring/Homeworks/HW04/Problems/variance.cc
2http://www.cs.trinity.edu/~bmassing/CS3366_2001spring/SamplePrograms/threads-timer.h

2

CSCI 3366 Homework 4 Spring 2001

2.5 Collaboration

For this assignment, please work individually. As always, discussion of the assignment is allowed
(encouraged, even), but for this assignment each person should do the actual coding independently.

3 Helpful hints, etc.

3.1 Sample programs to look at

You may find it useful to look at some of the example programs using multi-threading; see the
sample programs page3. In particular you may find it useful to look at the two programs that
compute the sum of N numbers. Both programs take the same approach to parallelizing the
computation, but they implement it in slightly different ways: threads-sum-1.cc4 makes use of
global variables, while threads-sum-2.cc5 takes a very C++-ish approach to passing the required
data to the threads via parameters. Included files other than those from the standard library (e.g.,
threads-timer.h) should also be available linked from the sample programs page.

3.2 Cautionary comments

P (the number of threads) might not evenly divide N . Your code should be prepared to cope with
this. At the very least, it should print an error message and stop.

4 What to turn in

Submit your completed program (variance.c, variance.cc, or variance.java), plus a text file
containing your timing observations (as described in the “Details” section above), by e-mail as
described in the Guidelines for Programming Assignments6, using a subject header of “cs3366
hw 4”. Please submit the timing observations as a plain text file.

3http://www.cs.trinity.edu/~bmassing/CS3366_2001spring/SamplePrograms/index.html
4http://www.cs.trinity.edu/~bmassing/CS3366_2001spring/SamplePrograms/threads-sum-1.cc
5http://www.cs.trinity.edu/~bmassing/CS3366_2001spring/SamplePrograms/threads-sum-2.cc
6http://www.cs.trinity.edu/~bmassing/CS3366_2001spring/Notes/pgmguidelines/index.html

3

