Patterns for Finding Concurrency for Parallel
Application Programs*

BernalL. Massingill® Timothy G. Mattson*
Beverly A. Sanders®

Abstract

We are involved in an ongoing effort to develop a pattern language for parallel
application programs. The pattern language consists of a set of patterns that guide
the programmer through the entire process of developing a parallel program, in-
cluding patterns that help find the concurrency in the problem, patterns that help
find the appropriate algorithm structure to exploit the concurrency in parallel ex-
ecution, and patterns describing lower-level implementation issues. The current
version of the pattern language can be seenatht t p: / / www. ci se. uf |l . edu/
research/ Paral | el Patterns.

In this contribution, we present patterns from the FindingConcurrency design
space. These patterns form the starting point for novice parallel programmers and
guide them through the process of identifying exploitable concurrency in a problem
and designing a high-level algorithm to take advantage of this concurrency.

1 Introduction

1.1 Overview

Parallel hardware has been available for decades, and is becoming increasingly main-
stream. Parallel software that fully exploits the hardware is much rarer, however, and
mostly limited to the specialized area of supercomputing. We believe that part of the
reason for this state of affairs is that most parallel programming environments, which
focus on the implementation of concurrency rather than higher-level design issues, are
simply too difficult for most programmers to risk using them.

*Copyright (©) 2000, Berna L. Massingill. Permission is granted to copy for the PLoP 2000 conference.
All other rights reserved.

TDepartment of Computer and Information Science and Engineering, University of Florida, Gainesville,
FL; bl m@i se. ufl . edu (current address: Department of Computer Science, Trinity University, San
Antonio, TX; bmassi ng@rini ty. edu).

*Parallel Algorithms Laboratory, Intel Corporation; t i ot hy. g. matt son@ nt el . com

8 Department of Computer and Information Science and Engineering, University of Florida, Gainesville,
FL; sanders@i se. ufl . edu.

Introduction 2

We are involved in an ongoing effort to design a pattern language for parallel ap-
plication programs. The goal of the pattern language is to lower the barrier to parallel
programming by guiding the programmer through the entire process of developing
a parallel program. In our vision of parallel program development, the programmer
brings into the process a good understanding of the actual problem to be solved, then
works through the pattern language, eventually obtaining a detailed design or even
working code. The pattern language is organized into four design spaces, which are
visited in order.

e The FindingConcurrency design space includes high-level patterns that help find
the concurrency in a problem and decompose it into a collection of tasks.

e The AlgorithmStructure design space contains patterns that help find an appro-
priate algorithm structure to exploit the concurrency that has been identified.

e The SupportingStructures design space includes patterns that describe useful ab-
stract data types and other supporting structures.

e The ImplementationMechanisms design space contains patterns that describe
lower-level implementation issues.

The latter two design spaces (slightly stretching the typical notion of a pattern) might
even include reusable code libraries or frameworks. We use a pattern format for all
four levels so that we can address a variety of issues in a unified way. The current, in-
complete, version of the pattern language can be seenatht t p: / / www. ci se. uf | .
edu/ research/ Paral | el Patterns. It consists of a collection of extensively
hyperlinked documents, such that the designer can begin at the top level and work
through the pattern language by following links.

In this paper, we present patterns from the FindingConcurrency design space. These
patterns are used early in the design process, after the problem has been analyzed using
standard software engineering techniques and the key data structures and computations
are understood. They help programmers understand how to expose the exploitable
concurrency in their problems. More specifically, these patterns help the programmer

o Identify the entities into which the problem will be decomposed.
e Determine how the entities depend on each other.

e Construct a coordination framework to manage the parallel execution of the en-
tities.

These patterns collaborate closely with the AlgorithmStructure patterns, and one
of their main functions is to help the programmer select an appropriate pattern in the
AlgorithmStructure design space. Experienced designers might know how to do this
immediately, in which case they could move directly to the patterns in the Algorithm-
Structure design space.

Introduction 3

begin here
\ TaskDecomposition ‘
‘ DecompositionStrategy
‘ GroupTasks
DataDecomposition ‘
‘ OrderTasks DependencyAnalysis ‘
‘ DataSharing

‘ DesignEvaluation ‘

to AlgorithmStructure design space

Figure 1: Organization of the FindingConcurrency design space.

1.2 Structure of the FindingConcurrency design space

The patterns in this design space are organized as illustrated in Figure 1. The main
pathway through the patterns proceeds through three major patterns:

e DecompositionStrategy: This pattern helps the programmer decide whether the
problem should be decomposed based on a data decomposition, a task decompo-
sition, or a combination of the two.

e DependencyAnalysis: Once the entities into which the problem will be decom-
posed have been identified, this pattern helps the programmer understand how
they depend on each other.

e DesignEvaluation: This pattern is a consolidation pattern. It is used to evaluate
the results of the other patterns in this design space and prepare the programmer
for the next design space, the AlgorithmStructure design space.

Branching off from the DecompositionStrategy and DependencyAnalysis patterns
are groups of patterns that help with problem decomposition and dependency analysis.
We use double-headed arrows for most of the pathways in the figure to indicate that
one may need to move back and forth between the patterns repeatedly as the analysis
proceeds. For example, in a dependency analysis, the programmer may group the tasks
one way and then determine how this grouping affects the data that must be shared
between the groups. This sharing may imply a different way to group the tasks, lead-
ing the programmer to revisit the tasks grouping. In general, one can expect working
through these patterns to be an iterative process.

The DecompositionStrategy Pattern 4

1.3 Inthispaper

The remainder of this paper consists of the complete text of most of the patterns of
the FindingConcurrency design space. Each numbered major section represents one
document in the collection of hyperlinked documents making up our pattern language;
each document represents one pattern. To make the paper self-contained, we replace
hyperlinks with text formatted like this and footnotes or citations.

2 The DecompositionStrategy Pattern

Intent:

This pattern addresses the question “How do you go about decomposing your problem
into parts that can be run concurrently?”

M otivation:

Parallel programs let you solve bigger problems in less time. They do this by simul-
taneously solving different parts of the problem on different processors. This can only
work if your problem contains exploitable concurrency, i.e., multiple activities or tasks
that can take place at the same time.

Exposing concurrency requires decomposing the problem along two different di-
mensions:

e Task decomposition. Break the stream of instructions into multiple chunks
called tasks that can execute simultaneously. To achieve reasonable runtime
performance, tasks must execute with minimal need to interact; i.e., the over-
head associated with managing dependencies must be small compared to the
program’s total execution time.

e Data decomposition. Determine how data interacts with the tasks. Some of
the data will be modified only within a task; i.e., it is local to each task. For
such data, the algorithm designer must figure out how to break up the data and
properly associate it with the right tasks. Other data is modified by multiple
tasks; i.e., the data is global or shared between tasks. For shared data, the goal is
to design the algorithm so that tasks don’t get in each other’s way as they work
with the data.

Balancing the opposing forces of data and task decomposition occurs against the
backdrop of two additional factors: efficiency and flexibility. The final program must
effectively utilize the resources provided by the parallel computer. At the same time,
parallel computers come in a variety of architectures, and you need enough flexibility
to handle all the parallel computers you care about.

Note that in some cases the appropriate decomposition will be obvious; in others
you will need to dig deeply into the problem to expose the concurrency. Sometimes
you may even need to completely recast the problem and restructure how you think
about its solution.

The DecompositionStrategy Pattern 5

Applicability:
Use this pattern when

e You have determined that your problem is large and significant enough that ex-
pending the effort to create a parallel program is worthwhile.

e You understand the key data structures of the problem and how they are used.

e You understand which parts of the problem are most compute-intensive. It is on
these parts that you will focus your efforts.

I mplementation:

The goal is to decompose your problem into relatively independent entities that can
execute concurrently. As mentioned earlier, there are two dimensions to be considered:

e The task-decomposition dimension focuses on the operations that will take
place within concurrently-executing entities. We refer to a set of operations that
are logically grouped together as a task. For a task to be useful, the operations
that make up the task should be largely independent of the operations taking
place inside other tasks.

e The data-decomposition dimension focuses on the data. You need to decom-
pose the problem’s data into chunks that can be operated on relatively indepen-
dently.

While the decomposition needs to address both the tasks and the data, the nature
of the problem usually (but not always) suggests one decomposition or the other as the
primary decomposition, and it is easiest to start with that one.

e A data-based decomposition is a good starting point if:

— The most compute-intensive part of the problem manipulates a large data
structure.

— Similar operations are being applied to different parts of the data structure,
in such a way that the different parts can be operated on relatively indepen-
dently.

For example, many problems can be cast in terms of the multiplication of large
matrices. Mathematically, each element of the product matrix is computed using
the same set of operations. This suggests that an effective way to think about
this problem is in terms of the decomposition of the matrices. We talk about this
approach in more detail in the DataDecomposition pattern?.

Data-based decompositions tend to be more scalable (i.e., their performance
scales with the number of processing elements), since memory is being decom-
posed.

1Section 4 of this paper.

The DecompositionStrategy Pattern 6

e A task-based decomposition is a good starting point if:

— Itis natural to think about the problem in terms of a collection of indepen-
dent (or nearly independent) tasks.

For example, many problems can be considered in terms of a function that is
evaluated repeatedly, with a slightly different set of conditions each time. We can
associate each function evaluation with a task. If this is the case, you should start
with a task-based decomposition, which is the subject of the TaskDecomposition
pattern?,

If there are many nearly independent tasks, task-based decompaositions tend to
produce a design with a lot of flexibility, which is an advantage when later de-
ciding how to allocate tasks to processing elements.

In some cases, you can view the problem in either way. For example, we earlier
described a data decomposition of a matrix multiplication problem. You can also view
this as a task-based decomposition — for example, by associating the update of each
matrix column with a task. In cases where a clear decision cannot be made, the best
approach is to try each decomposition and see which one is most effective at exposing
lots of concurrency.

During the design process, you also need to keep in mind the following competing
forces:

o Flexibility. Is your design abstract enough that you have sufficient flexibility to
adapt to different implementation requirements? For example, you don’t want to
narrow your options to a single computer system or style of programming at this
stage of the design.

e Efficiency. A parallel program is only useful if it scales efficiently with the size
of the parallel computer (in terms of reduced runtime and/or memory utilization).
For the problem’s decomposition, this means you need enough tasks to keep all
the processing elements® (PEs) busy with enough work per task to compensate
for overhead incurred to manage dependencies. The drive for efficiency can lead
to complex decompositions that lack flexibility.

e Simplicity. Your decomposition needs to be complex enough to get the job done,
but simple enough to let you debug and maintain your program in a reasonable
amount of time.

Balancing these competing forces as you decompose your problem is difficult, and
in all likelihood you will not get it right the first time.

Therefore, use an iterative decomposition strategy in which you decompose by the
most obvious method (task or data) and then by the other method (data or task).

2Section 3 of this paper.
3Generic term used to reference a hardware element in a parallel computer that executes a stream of
instructions.

The DecompositionStrategy Pattern 7

Examples:
Medical imaging.

We will define a single problem here, taken from the field of medical imaging, and
then decompose it two different ways: in terms of tasks and in terms of data. The
decompositions will be presented in the DataDecomposition and TaskDecomposition
patterns; the discussion here will serve to define the problem and then describe the way
the two solutions interact.

An important diagnostic tool is to give a patient a radioactive substance and then
watch how that substance propagates through the body by looking at the distribution
of emitted radiation. Unfortunately, the images are of low resolution, due in part to the
scattering of the radiation as it passes through the body. It is also difficult to reason from
the absolute radiation intensities, since different pathways through the body attenuate
the radiation differently.

To solve this problem, medical imaging specialists build models of how radiation
propagates through the body and use these models to correct the images. A common
approach is to build a Monte Carlo model. Randomly selected points within the body
are assumed to emit radiation (usually a gamma ray), and the trajectory of each ray
is followed. As a particle (ray) passes through the body, it is attenuated by the differ-
ent organs it traverses, continuing until the particle leaves the body and hits a camera
model, thereby defining a full trajectory. To create a statistically significant simulation,
thousands if not millions of trajectories are followed.

The problem can be parallelized in two ways. Since each trajectory is independent,
it would be possible to parallelize the application by associating each trajectory with a
task. This approach is discussed in the “Examples” section of the TaskDecomposition
pattern. Another approach would be to partition the body into sections and assign
different sections to different processing elements. This approach is discussed in the
“Examples” section of the DataDecomposition pattern.

As in many ray-tracing codes, there are no dependencies between trajectories, mak-
ing the task-based decomposition the natural choice. By eliminating the need to man-
age dependencies, the task-based algorithm also gives the programmer plenty of flexi-
bility later in the design process, when how to schedule the work on different process-
ing elements becomes important.

The data decomposition, however, is much more effective at managing memory
utilization. This is frequently the case with a data decomposition as compared to a task
decomposition. Since memory is decomposed, data-decomposition algorithms also
tend to be more scalable. These issues are important and point to the need to at least
consider the types of platforms that will be supported by the final program. The need
for portability drives one to make decisions about target platforms as late as possible.
There are times, however, when delaying consideration of platform-dependent issues
can lead one to choose a poor algorithm.

Parallel database.

As another example of a single problem that can be decomposed in multiple ways,
consider a parallel database. One approach is to break up the database itself into mul-

The TaskDecomposition Pattern 8

tiple chunks. Multiple worker processes would handle the actual searching operations,
each on the chunk of the database it “owns” and a single manager would receive search
requests and forward each to the relevant worker to carry out the search.

A second approach for this parallel database problem would also use a manager
and multiple workers but would keep the database intact in one logical location. The
workers would be essentially identical and each would be able to work on any piece of
the database.

Observe that the issues raised in this example are similar to those by the medical
imaging example.

Iterative algorithms.

Many linear-algebra problems can be solved by repeatedly applying some operation
to a large matrix or other array. Effective parallelizations of such algorithms are usu-
ally based on parallelizing each iteration (rather than, say, attempting to perform the
iterations concurrently). For example, consider an algorithm that solves a system of
linear equations Ax = b (where A is a matrix and x and b are vectors) by calculating
a sequence of approximations x(9, x(), x(2 and so forth, where for some function f,
x+1) = £ (x(), A typical parallelization would be structured as a sequential iteration
(computing the x(¥s in sequence), with each iteration (computing xk+ = f (x()) for
some value of k) being computed in a way that exploits potential concurrency. For
example, if each iteration requires a matrix multiplication, this operation can be paral-
lelized using either a task-based decomposition (as discussed in the “Examples” section
of the TaskDecomposition pattern) or a data-based decomposition (as discussed in the
“Examples” section of the DataDecomposition pattern).

3 TheTaskDecomposition Pattern

Intent:
This pattern addresses the question “How do you decompose a problem into tasks that
can execute concurrently?”
Also Known As:
e Functional Decomposition.

e Task Parallelism.

Motivation:

This pattern addresses the issues raised during a primarily task-based decomposition.
The key to an effective task decomposition is ensuring that the tasks are sufficiently
independent that maintaining dependencies takes only a small fraction of the program’s
overall execution time. It is also important to ensure that the execution of the tasks

The TaskDecomposition Pattern 9

can be equally shared among the ensemble of processing elements (the so-called load-
balancing problem).

Applicability:
Use this pattern when

e You have reviewed the DecompositionStrategy pattern® and decided to try a task-
based decomposition of your problem.

I mplementation:

It is very rare that a task-based decomposition can be carried out automatically. You
have to do this by hand based on your knowledge of the problem and the code required
to implement it.

In a task-based decomposition, you look at your problem as a collection of distinct
tasks, paying particular attention to

e The actions that are carried out to solve your problem.

e Whether these actions are distinct and relatively independent.

As a first pass, try to identify as many tasks as possible; it is much easier to start
with too many tasks and merge them later on than to start with too few tasks and
later try to split them. The key is that the individual tasks execute for the most part
independently of each other.

You can find tasks in many different places:

e In some cases, each task corresponds to a distinct call to a function in your
program. These function calls can be associated with the tasks, leading to what
is sometimes called a “functional decomposition”.

e Another place to find tasks is in distinct iterations within an algorithm. If the
iterations are independent and there are enough of them, then they map very well
onto tasks in a task-based decomposition. This style of task-based decomposition
leads to what are sometimes called “loop-splitting” algorithms.

e Tasks also play a key role in data-driven decompositions. In this case, a large
data structure is decomposed and multiple units of execution concurrently update
different chunks of the data structure. In this case, the tasks are those updates on
individual chunks.

This is only a partial list of where you can find tasks. Keep in mind the competing
forces mentioned in the DecompositionStrategy pattern:

4Section 2 of this paper.

The TaskDecomposition Pattern 10

e Flexibility. Your design needs to be flexible in the number of tasks generated.
This will let the design adapt to a wide range of parallel computers. Additional
flexibility is gained if the definition of the tasks is independent of how they are
scheduled for execution.

o Efficiency. There are two major efficiency issues to consider in your task de-
composition. First, each task must include enough work to compensate for the
overhead incurred by creating the tasks and managing their dependencies. Sec-
ond, the number of tasks must be large enough so that all the units of execution
are busy with useful work throughout the computation.

e Simplicity. Define tasks to make debugging and maintenance simple. When
possible, define tasks so they reuse code from existing sequential programs that
solve related problems.

Once you have your tasks, you need to look at the data decomposition implied by
the tasks. The DataDecomposition pattern® may help you with this analysis.

Examples:
Medical imaging.

Consider the medical imaging problem described earlier (in the “Examples” section of
the DecompositionStrategy pattern). In this application, a point inside a model of the
body is selected randomly, a radioactive decay is allowed to occur at this point, and
the trajectory of the emitted particle is followed. To create a statistically significant
simulation, thousands if not millions of trajectories are followed.

It is natural to associate each trajectory with a task. These tasks are particularly
simple to manage concurrently since they are completely independent. Another im-
portant point is to make sure there are enough of them so we can support a range of
computer systems, from those with a small number of processing elements to massively
parallel computers.

With the basic tasks in hand, we can now consider the corresponding data decom-
position and define what portions of the problem space need to be associated with each
task. In this case, each task needs to hold the information defining the trajectory at any
point, but that is all. The more challenging issue is the model of the body. You can’t
deduce this from the description of the problem we’ve given, but it turns out that the
body model can be huge. Since it is a read-only model, there is no problem if there
is an effective shared-memory system, since each task can read data as needed. If the
target system uses distributed memory, however, it may be necessary to replicate the
body model on each processing element. This can be very time-consuming and can
waste a great deal of memory. Thus, for such target systems a data-based decomposi-
tion, described in the “Examples” section of the DataDecomposition pattern, may work
better.

5Section 4 of this paper.

The DataDecomposition Pattern 11

Matrix multiplication.

Consider the standard multiplication of two matrices (C = A-B). We can produce a
task-based decomposition of this problem by considering the calculation of each ele-
ment of the product matrix as a separate task. Each task needs access to one row of
A and one column of B. This decomposition has the advantage that all the tasks are
independent, and because all the data that is shared among tasks (A and B) is read-
only, it will likely be straightforward to implement in a shared-memory environment.
In a distributed-memory environment, however, the requirement that each task have
access to a row of A and a column of B may lead to excessive memory use and/or
communication, so this decomposition may not be effective. See the “Examples” sec-
tion of the DataDecomposition pattern for a discussion of other decompositions more
suited to distributed-memory environments. (In fact, a data-based decomposition may
be more effective for most current platforms — the above task-based decomposition
works well only if access to memory elements is roughly uniform, which is not the
case with cache-based computers.)

Known Uses:

Task-based decompositions are used in many applications. The distance geometry code
(DGEOM) described in [Mattson96][2] uses a task based decomposition.

4 The DataDecomposition Pattern

Intent:

This pattern addresses the question “How do you decompose a problem’s data into
units that can be operated on relatively independently?”

Also Known As:

o Data Parallelism.

M otivation:

This pattern looks at the issues involved in decomposing data into units that can be
updated concurrently.

For example, most linear algebra problems update large matrices, applying a simi-
lar set of operations to each element of the matrix. In these cases, it is straightforward
to drive the parallel algorithm design by looking at how the matrix can be broken up
into blocks that are updated concurrently. The task definitions then follow from how the
blocks are defined and mapped onto the processing elements of the parallel computer.

Applicability:

Use this pattern when

The DataDecomposition Pattern 12

e You have reviewed the DecompositionStrategy pattern® and decided to try a data-
based decomposition of your problem.

I mplementation:

Compilers are good at analyzing data dependencies and can in some cases automati-
cally deduce a data decomposition. In most cases, however, you have to carry out the
decomposition by hand.

If you have already carried out a task-based decomposition, the data decomposition
is driven by the needs of each task. If well-defined and distinct data can be associated
with each task, the decomposition should be simple.

If you are starting with a data decomposition, however, you need to look not at
the tasks but at the central data structures defining your problem, considering whether
they can they be broken down into chunks that can be operated on concurrently. A few
common examples are

e Array-based computations: Concurrency can be defined in terms of updates of
different segments of the array. If the array is multidimensional, observe that
it can be decomposed in variety of ways (rows, columns, or blocks of varying
shapes).

e Recursive data structures: We can think of, for example, decomposing the par-
allel update of a large tree data structure by decomposing the data structure into
subtrees that can be updated concurrently.

Regardless of the nature of the underlying data structure, the decomposition of the
data serves as the organizing principle of your parallel algorithm.

As you consider how to decompose the problem’s data structures, keep in mind the
competing forces mentioned in the DecompositionStrategy pattern:

o Flexibility. The size and number of data chunks need to be flexible to support
the widest range of parallel systems. Consider parameterizing the decomposition
S0 it can be smoothly adjusted to fit the granularity of most parallel computers.

If at all possible, you should define chunks whose size and number are controlled
by a small number of parameters. These parameters define so-called “granularity
knobs” that you can vary to modify the data decomposition to match the needs
of the underlying hardware. (Note, however, that many designs are not infinitely
adaptable with respect to granularity.)

The easiest place to see the impact of granularity on the data decomposition
is in the overhead required to manage dependencies between chunks. The time
required to manage dependencies must be small compared to the overall runtime.
In a good data decomposition, the dependencies scale at a lower dimension than
the computational effort associated with each chunk. For example, in many finite
difference codes, the half-width of the finite difference stencil defines a region of
cells along the surface of each decomposed chunk. This surface region defines

6Section 2 of this paper.

The DataDecomposition Pattern 13

the dependency between chunks. The size of the set of dependent cells scales as
the surface area, while the effort required in the computation scales as the volume
of the chunk. This means that you can scale the computational effort (based
on the chunk’s volume) to offset overheads associated with data dependencies
(based on the surface area of the chunk).

e Efficiency. You need to make sure that the chunks are large enough so the
amount of work to update the chunk offsets the overhead of managing depen-
dencies. A more subtle issue to consider is how the chunks map onto units of
execution’. An effective parallel algorithm must balance the load between units
of execution. If this isn’t done well, for example, several processing elements
in the parallel computer may finish their work before the others, and the overall
scalability will suffer. This may require clever ways to break up the problem.
For example, if the problem clears the columns in a matrix from left to right, a
column mapping of the matrix will cause problems as the units of execution with
the leftmost columns will finish their work before the others. A row-based block
decomposition or even a block-cyclic decomposition (in which rows are assigned
cyclically to processing elements®) would do a much better job of keeping all the
processors fully occupied.

e Simplicity. It may seem obvious, but many programmers have wasted countless
hours trying to debug overly complex data decompositions. A data decompo-
sition will usually require a mapping of a global index space onto a task-local
index space. Make this mapping abstract so it can be easily isolated and tested.

Once you have your data decomposed, you need to look at the task decomposition
implied by the tasks. The TaskDecomposition pattern may help you with this analysis.

Examples:
Medical imaging.

Consider the medical imaging problem described earlier (in the “Examples” section of
the DecompositionStrategy pattern). In this application, a point inside a model of the
body is selected randomly, a radioactive decay is allowed to occur at this point, and
the trajectory of the emitted particle is followed. To create a statistically significant
simulation, thousands if not millions of trajectories are followed.

A task-based decomposition is a natural choice for this problem. Memory con-
straints, however, have motivated the development of data-based decompositions for
this problem. When the memory of the underlying parallel hardware is distributed, it
is advantageous to avoid replicating the huge body model on each processing element.

In a data-based decomposition, the body model is the large central data structure
around which the computation can be organized. The model is broken into segments,

"Generic term for one of a collection of concurrently-executing entities, usually either processes or
threads.

8Generic term used to reference a hardware element in a parallel computer that executes a stream of
instructions.

The DependencyAnalysis Pattern 14

and one or more segments are associated with each processing element. The body
segments are only read, not written, during the trajectory computations, so there are no
data dependencies created by the decomposition of the body model.

Once the data has been decomposed, you need to look at the tasks associated with
each data segment. In this case, each trajectory passing through the data segment
defines a task. The trajectories are initiated and propagated within a segment exactly
as for the task-based approach. The difference occurs when a segment boundary is
encountered. When this happens, the trajectory must be passed between segments. It
is this transfer that defines the dependencies between data chunks.

Notice that this algorithm is more complex than one based on a task-based decom-
position. Considerable effort can be required to implement the bookkeeping required
to keep track of the set of trajectories as they move through the body model.

Matrix multiplication.

Consider the standard multiplication of two matrices (C = A-B). In the “Examples”
section of the TaskDecomposition pattern we discussed a task-based decomposition
suitable for shared-memory environments but less so for distributed-memory environ-
ments. Several data-based decompositions are possible for this problem. A straightfor-
ward one would be to assign a row of the product matrix C to each processing element.
From the definition of matrix multiplication, that means that each processing element
would need the full A matrix, but only the corresponding row of B. With such a data
decomposition, the basic task in our algorithm becomes the computation of a row of C.
This still requires the replication of too much data (the full A matrix), however, so we
might refine our algorithm so that we decompose all three matrices into blocks. The
basic task then becomes the update of a C block, with the A and B blocks being cycled
among the nodes as the computation proceeds. The result is the data-based decom-
position discussed as an example of the GeometricDecomposition pattern®. Although
such a block decomposition is more complex, it is nevertheless the approach used in
practice since it is the most efficient.

Known Uses:

Data decompositions are very common in parallel scientific computing. The parallel
linear algebra library ScaLAPACK is a good example.

5 The DependencyAnalysis Pattern

Intent:

This pattern addresses the question “After you have decomposed a problem into tasks,
how do you analyze how they depend on each other?”

9A pattern in the AlgorithmStructure design space; seeht t p: / / wwv. ci se. uf | . edu/ r esear ch/
Paral | el Patterns.

The DependencyAnalysis Pattern 15

Motivation:

This pattern comes into play once you have decomposed a problem into tasks that can
execute concurrently. In a few cases, not only can these tasks execute concurrently, but
they are completely independent. For independent tasks, the programmer need only
create the tasks and schedule them for efficient execution on the processing elements
of the parallel computer.

More frequently, however, a problem’s tasks are not independent; they influence
each other such that what happens in one task affects the execution of another task. We
call these influences between tasks dependencies. Dependencies take one of two basic
forms:

e The most common form of dependency occurs when two or more tasks must
share or exchange data as they execute. For example, in a data-based decompo-
sition, the original problem domain is divided into multiple regions that can be
updated in parallel. The update of any given region requires information from
other regions (frequently, though not always, from the boundaries of its neigh-
boring regions). This represents a data-sharing dependency between the regions.

e The second basic form of dependency is an ordering constraint. In other words,
a collection of tasks may need to execute in a certain order. For example, a
program may need to ensure that a complex data structure has been completely
determined before a collection of tasks begins processing the data. Another form
of ordering constraint occurs when a collection of tasks must run at the same
time. For example, in the data decomposition example we discussed earlier, if
all of the regions are not processed at the same time, the parallel program could
stall (deadlock) as some regions wait for data from inactive regions.

Finding and managing dependencies is one of the most difficult jobs facing a par-
allel program designer.

Applicability:
Use this pattern when

e You have decomposed your problem into tasks that can execute concurrently,
perhaps using the DecompositionStrategy patterni®, and understand both the
problem can be broken down into semi-independent tasks (its task decompo-
sition) and how its data must be decomposed to support those tasks (its data
decomposition).

I mplementation:

The goal of a dependency analysis is to understand in detail how the tasks that make
up your parallel program depend on each other. There are two kinds of dependencies:

10gection 2 of this paper.

The DependencyAnalysis Pattern 16

e Data-sharing dependencies, which occur when two or more tasks must share
or exchange data as they execute.

e Ordering constraints, which occur when tasks to execute in a certain order.

The dependencies between a problem’s tasks have a major impact on both the effi-
ciency and the complexity of the final program:

e The efficiency of a parallel program is proportional to the fraction of time spent
making progress on a problem’s computation. In this light, time spent communi-
cating shared data or managing temporal constraints is wasted. Your dependen-
cies must require little time to manage relative to the computation’s time.

e Managing dependencies is a major source of complexity in a design and leads to
many of the most serious errors in a parallel program. Probably the most difficult
bugs to detect and fix are those that result from inconsistent sharing of data. Race
conditions (situations in which program results depend on the relative order of
task execution) frequently arise when the state of shared data is out of synch
with task execution. For example, in an iterative algorithm, it is easy to commit
synchronization errors that cause data from an earlier iteration to be incorrectly
used in the present iteration. It is therefore important to manage dependencies
so that these and other errors are easy to detect and fix.

Correctly analyzing dependencies among tasks is both difficult and crucial to the
overall effectiveness of the design. There is no single way to accomplish this analysis,
but we have found the following approach to be effective:

e First, identify how the tasks should be grouped together. Certain tasks may need
to cooperatively update shared data structures, and therefore the algorithm design
must ensure that they run together. On the other hand, a subset of tasks may
be completely independent, but to help build a good scheduling algorithm to
efficiently execute them, they should be grouped together. This and other issues
pertaining to the grouping of tasks are discussed in the GroupTasks pattern’®.

o Next, identify any ordering constraints between groups of tasks. For example,
if one group of tasks generates a matrix and another group uses that matrix, the
second group must wait until the first group completes before it can execute.
This process is discussed further in the OrderTasks patternt2.

o Finally, analyze how tasks share data, both within and among groups. This pro-
cess is discussed further in the DataSharing pattern®3.

It is not always possible to see whether decisions made at one step of this process
will be effective until after you have worked through later steps. In fact, in many cases

1 Section 6 of this paper.
125egtion 7 of this paper.
135ection 8 of this paper.

The DependencyAnalysis Pattern 17

you cannot fully understand whether a decomposition will be effective until after an-
alyzing the resulting dependencies. Therefore, you should expect to iterate back and
forth between the dependency and decomposition patterns, first carrying out a decom-
position, analyzing its dependencies, and then reconsidering the decomposition. Even
experienced parallel programmers may need to iterate though several cycles before
getting it right.

Examples:
Molecular dynamics.

We will consider a single example as we look at each one of the dependency analysis
design patterns. In the present pattern, we’ll just introduce the problem and its decom-
position. The dependency analysis itself will be described in the “Examples” sections
of the individual dependency patterns.

Our example problem is to design a parallel molecular dynamics program. The
theoretical background of molecular dynamics is interesting, but not really relevant to
this discussion; we just need to understand the problem at its simplest level.

Molecular dynamics is used to simulate the motions of a large molecular system.
For example, molecular dynamics simulations show how a large protein moves around
and how different-shaped drugs might interact with the protein. Not surprisingly,
molecular dynamics is extremely important in the pharmaceutical industry. It turns
out that molecular dynamics is important in computer science as well. 1t’s a perfect
test problem for computer scientists working on parallel computing: it’s simple to un-
derstand, relevant to science at large, and very tough to effectively parallelize. Many
papers have been written by computer scientists about parallel molecular dynamics
algorithms (see the references in [Mattson94][1] for some of these papers).

So what is the basic molecular dynamics problem? The idea is to treat the molecule
as a large collection of balls connected by springs. The balls represent the atoms in
the molecule, while the springs represent the chemical bonds between the atoms. The
molecular dynamics simulation itself is an explicit time-stepping process. At each time
step, you compute the force on each atom, and then use standard classical mechanics
to compute how the force moves the atoms. This process is carried out repeatedly to
step through time and compute a trajectory for the molecular system.

The forces due to the chemical bonds (the “springs” are relatively simple to com-
pute. These correspond to the vibrations and rotations of the chemical bounds them-
selves. These are short-range forces that can be computed with knowledge of the hand-
ful of atoms that share chemical bonds. What makes the molecular dynamics problem
so difficult is the fact that the “balls” have partial electrical changes. Hence, while
atoms interact with a small neighborhood of atoms through the chemical bonds, the
electrical charge causes every atom to apply a force to every other atom.

This is the famous N-body problem. On the order of N2 terms must be computed
to get the long-range force. Since N is large (tens or hundreds of thousands) and the
number of time steps in a simulation is huge (tens of thousands), the time required to
compute these long-range forces dominates the computation. Clever scientists have
worked out elegant ways to reduce the effort required to solve the N-body problem.

The DependencyAnalysis Pattern 18

We are only going to discuss the simplest of these tricks: the so-called cutoff method.

The idea is quite simple. Even though each atom exerts a force on every other
atom, this force decreases as the distance between the atoms grows. Hence, it should be
possible to pick a distance beyond which the force contribution can be ignored. That’s
the cutoff, and it reduces a problem that scales as O(N?) (where “O(N)” denotes “on
the order of N™) to one that scales as O(N x n), where n is the number of atoms within
the cutoff volume, usually hundreds). The computation is still huge, and it dominates
the overall runtime for the simulation, but at least the problem is tractable.

There are a host of details, but the basic simulation can be summarized with the
following simplified pseudo-code:

Int const N /!l nunber of atons

Array of real :: Atons (3,N //3D coordinates
Array of real :: Force (3,N //force in each di mension
Array of lists :: neighbors(N) //atonms in cutoff volune

| oop over time steps
vi brational _forces (N, Atons, Forces)
rotational _forces (N, Atoms, Forces)
nei ghbor _list (N, Atons, neighbors)
|l ong_range_forces (N, Atoms, neighbors, Forces)
updat e_at om positions(N, Atons, Forces)
physi cal _properties (... Lots of stuff ...)
end | oop

There are a few details to mention, and then we can consider how this can be solved
in parallel.

First, the nei ghbor _I i st () computation is time-consuming. The gist of the
computation is a loop over each atom, inside which every other atom is checked to
see if it falls within the indicated cutoff volume. Fortunately, the time steps are very
small, and the atoms don’t move very much in any given time step. Hence, this time-
consuming computation is only carried out every 10 to 100 steps. For our discussion,
we are not going to parallelize this computation.

Second, the physi cal _properti es() function computes velocities, energies,
correlation coefficients, and a host of interesting physical properties. These computa-
tions, however, are not that involved and do not affect the overall parallel algorithm.
Hence, we will ignore them in this discussion.

We are now ready to look at how to decompose this problem for execution on a
parallel computer. In any parallel algorithm project, the first step is to decide where
the most time-consuming computations are taking place. We have already discussed
this and pointed out that the bulk of the time is in | ong_r ange f or ces(). This
means that whatever we do, we must pick a problem decomposition that makes that
computation run efficiently in parallel.

While we won’t discuss it in detail here (see [Mattson94][1] for details), each of
the computations inside the time loop has a similar structure. Namely, they include a
loop over atoms in which each loop iteration independently updates that atom’s corre-

The GroupTasks Pattern 19

sponding array elements. So a natural task definition for each function is an iteration
of this atom-loop: i.e., the update required by each atom.

Now let’s look at the data decomposition. Each element of the array of atomic
coordinates, At ons (the array of atomic coordinates) is updated using its own data in
all cases and coordinate data from a neighborhood of atoms in most cases. Elements of
the For ces array are updated similarly (Newton’s third law comes into play so when
you compute the force of atom | on atom J you also get the negative of the force of
atom J and atom I). Hence, these arrays need to be managed as shared data.

Summarizing our problem and its decomposition, we have the following:

o Tasks that find the vibrational forces on an atom.

Tasks that find the rotational forces on an atom.

Tasks that find the long-range forces on an atom.

Tasks that update the position of an atom.

A task to update the neighbor list for all the atoms (which we will leave sequen-
tial).

e Shared arrays for the atomic coordinates and the forces.

Dependencies among these tasks and the associated data will be analyzed in the
“Examples” sections of the dependency patterns (Group Tasks, OrderTasks, and

DataSharing).

6 TheGroupTasks Pattern

Intent:

This pattern addresses the question “How can you group the tasks that make up a
problem decomposition in a way that simplifies the job of managing dependencies?”

M otivation:

This pattern constitutes the first step in analyzing dependencies among the tasks of a
problem decomposition. In developing the problem’s task decomposition, we urged the
designer to think of the problem in terms of tasks that can execute concurrently. While
we did not emphasize it during the task decomposition, it is clear that these tasks do
not constitute a flat set. For example, tasks derived from the same high-level operation
in the algorithm are naturally grouped together. Other tasks may not be related in terms
of the original problem but have similar constraints on their concurrent execution and
can thus be grouped together.

In short, there is considerable structure to the set of tasks. These structures — these
groupings of tasks — simplify a problem’s dependency analysis. If a group shares a
temporal constraint, you can satisfy that constraint once for the whole group. 1f a group

The GroupTasks Pattern 20

of tasks must work together on a shared data structure, the required synchronization can
be worked out once for the whole group. If the tasks in a group are independent in every
way, it may simplify the design and increase the available concurrency (thereby letting
you scale to more processing elements) to group them together.

In each case, the idea is to define groups of tasks that share constraints and simplify
the problem of managing constraints by dealing with groups rather than individual
tasks.

Applicability:
Use this pattern when

e You have decomposed your problem into tasks that can execute concurrently
(perhaps using the DecompositionStrategy pattern) and understand both the prob-
lem can be broken down into semi-independent tasks (its task decomposition)
and how its data must be decomposed to support those tasks (its data decompo-
sition).

I mplementation:

Constraints among tasks fall into a few major categories, as follows.

e The easiest dependency to understand is a temporal dependency — i.e., a con-
straint placed on the order in which a collection of tasks executes. If task A
depends on the results of task B, for example, then task A must wait until task
B completes before it can execute. We can usually think of this case in terms of
data flow: task A is blocked waiting for the data to be ready from task B; when
B completes, the data flows into A.

e Another form of ordering constraint occurs when a collection of tasks must run
at the same time. For example, in many data-parallel problems, the original
problem domain is divided into multiple regions that can be updated in parallel.
Typically, the update of any given region requires information about the bound-
aries of its neighboring regions. If all of the regions are not processed at the same
time, the parallel program could stall (deadlock) as some regions wait for data
from inactive regions.

o Finally, a more subtle ordering constraint occurs when tasks in a group are truly
independent of each other. These tasks do not have an ordering constraint be-
tween them. This is an important feature of a set of tasks (because it means they
can execute in any order, including concurrently), and it is important to clearly
note when this holds.

The goal of this design pattern is to group tasks based on these constraints, because

e By grouping tasks, you simplify the establishment of partial orders between tasks
since order constraints can be applied to the group rather than to individual tasks.

The GroupTasks Pattern 21

e Grouping tasks allows you to make clear which tasks must execute concurrently.

For a given problem and decomposition, there may be many ways to group tasks.
The goal is to pick a grouping of tasks that simplifies the dependency analysis. To
clarify this point, think of the dependency analysis as finding and satisfying constraints
on the concurrent execution of a program. When tasks share a set of constraints, it
simplifies the dependency analysis to group them together.

There is no single way to find task groups. We suggest the following approach,
keeping in mind that while you cannot think about task groups without considering the
constraints themselves, at this point in the design it is best to do so as abstractly as
possible — identify the constraints and group tasks to help resolve them, but try not to
get bogged down in the details.

e First, look at how you decomposed the original problem. In most cases, a high-
level operation (e.g., solving a matrix) or a large iterative program structure (e.g.,
a loop) plays a key role in defining the decomposition. This is the first place to
look for grouping tasks. The tasks that correspond to a high-level operation
naturally group together.

At this point, you have many small groups of tasks. In the next step, you’ll
look at the constraints shared between the tasks within a group. If the tasks
share a constraint — usually in terms of the update of a shared data structure —
keep them as a distinct group. Your algorithm design will need to ensure that
these tasks execute at the same time. For example, many problems involve the
concerted update of a shared data structure by a set of tasks. If these tasks do not
run concurrently, the program could deadlock.

o Next, ask yourself if any other task groups share the same constraint. If so, merge
the groups together. Large task groups give you flexibility in your design and
make it easier for you to scale to large parallel systems. They also can simplify
load balancing by giving you more ways to overlap concurrent execution of tasks
within a group.

e The next step is to look at constraints between groups of tasks. This is easy
when groups have a clear temporal ordering or when a distinct chain of data
moves between groups. The more complex case, however, is when otherwise
independent task groups share constraints between groups. In these cases, it may
be useful to merge these into a larger group of independent tasks — once again
because large task groups usually make for more scheduling flexibility and better
scalability.

Examples:
Molecular dynamics.

In the “Examples” section of the DependencyAnalysis pattern'* we described the prob-
lem of designing a parallel molecular dynamics program. In that discussion, we defined
the following tasks:

14gection 5 of this paper.

The OrderTasks Pattern 22

Tasks that find the vibrational forces on an atom.

Tasks that find the rotational forces on an atom.

Tasks that find the long-range forces on an atom.

Tasks that update the position of an atom.

A task to update the neighbor list for all the atoms (a single task because we have
decided to leave this part of the computation sequential).

Let’s consider how these can be grouped together. As a first pass, each item in the
above list corresponds to a high-level operation in the original problem and defines a
task group. If you were to dig deeper into the involved functions, you’d see that in each
case, the updates implied in the function are independent except for the need to manage
the sum into the force array.

We next want to see if we can merge any of these groups. Going down the list,
the tasks in first two groups are independent, but share the same constraints. In both
cases, coordinates for a small neighborhood of atoms are read and local contributions
are made to the force array, so we can merge these into a single group for bonded inter-
actions. The other groups have distinct temporal or ordering constraints and therefore
can’t be merged.

7 TheOrderTasks Pattern

Intent:

This pattern addresses the question “Given a way of decomposing a problem into tasks
and a way of collecting these tasks into logically related groups, how must these groups
of tasks be ordered to satisfy constraints among tasks?”

M otivation:

This pattern constitutes the second step in analyzing dependencies among the tasks of
a problem decomposition. The first step, addressed in the GroupTasks pattern'®, is to
group tasks based on constraints among them. The next step, discussed here, is to help
the designer find and correctly account for dependencies resulting from constraints on
the order of execution of a collection of tasks.

Constraints among tasks fall into a few major categories (described in more detail

in the GroupTasks pattern):

e Temporal dependencies, i.e., constraints placed on the order in which a collection
of tasks executes.

e Requirements that particular tasks must execute at the same time (e.g., because
each requires information that will be produced by the others).

15Gection 6 of this paper.

The OrderTasks Pattern 23

e Lack of constraint, i.e., total independence. While this is not strictly speaking a
constraint, it is an important feature of a set of tasks (because it means they can
execute in any order, including concurrently), and it is important to clearly note
when this holds.

The purpose of this design pattern is to help the designer find and correctly account
for dependencies resulting from constraints on the order of execution of a collection of
tasks.

Applicability:
Use this pattern when

e You have decomposed the problem into tasks and have decided where it makes
sense to combine tasks into groups (as discussed in the GroupTasks pattern).

I mplementation:

The goal of this pattern is to identify ordering constraints among groups of tasks and
use them to define a partial ordering among task groups. There are two goals to be met
in defining this ordering:

e It must be restrictive enough to satisfy all the constraints, to be sure the resulting
design is correct.

e It should not be more restrictive than it needs to be. Unneeded constraints can
impair program efficiency; the fewer the constraints, the more flexibility you
have to shift tasks around to balance the computational load between processing
elements.

To identify ordering constraints, consider the following ways tasks can depend on
each other:

o First look at the data required by a group of tasks before they can execute. Once
this data has been identified, find the task group that created it and you will
have an order constraint. For example, if one group of tasks builds a complex
data structure and another group uses it, you need to specify a sequential order
constraint between these groups. In other words, when you combine these two
groups in a program, they need to follow a sequential ordering.

e Also consider whether external services can impose ordering constraints. For
example, if a program must write to a file in a certain order, then these file 1/0
operations likely impose an ordering constraint.

e Finally, it is equally important to note when an order constraint does not exist.
If a number of task groups can execute independently, you have a much greater
opportunity to exploit parallelism, so be sure to note when tasks are independent,
not just when they are dependent.

The DataSharing Pattern 24

Regardless of the source of the constraint, your task as a designer is the same. You
must define the constraints that restrict the order of execution, and make sure they are
handled correctly in the resulting algorithm. At the same time, you should note when
ordering constraints are absent, since this will give you valuable flexibility later in your
design.

Examples:
Molecular dynamics.

In the “Examples” section of the DependencyAnalysis pattern'® we described the prob-
lem of designing a parallel molecular dynamics program. In the GroupTasks pattern,
we further described how to organize the tasks in the following groups:

e A group of tasks to find the “bonded forces” (vibrational forces and rotational
forces) on each atom.

e A group of tasks to find the long-range forces on each atom.
e A group of tasks to update the position of each atom.

e A task to update the neighbor list for all the atoms (which trivially constitutes a
task group).

Now we are ready to consider ordering constraints between the groups. Clearly, the
update of the atomic positions cannot occur until the force computation is complete.
Also, the long-range forces cannot be computed until the neighbor list is updated. So
in each time step, the groups must be ordered as shown in Figure 2.

While it is too early in the design to consider in detail how these ordering con-
straints will be enforced, eventually we will need to provide some sort of synchroniza-
tion primitive to ensure that they are strictly followed.

8 TheDataSharing Pattern

Intent:

This pattern addresses the question “Given a way of decomposing a problem into tasks,
how is data shared among the tasks?”

M otivation:

This pattern constitutes the third step in analyzing dependencies among the tasks of a
problem decomposition. The first and second steps, addressed in the GroupTasks and
OrderTasks patterns?’, are to group tasks based on constraints among them and then
determine what ordering constraints apply to groups of tasks. The next step, discussed

16gection 5 of this paper.
17 Sections 6 and 7 of this paper.

The DataSharing Pattern 25

Neighbor list

Bonded forces

Long-range forces

Update atomic positions

Next time step

Figure 2: Ordering of tasks in molecular dynamics problem.

here, is to analyze how data is shared among groups of tasks, so that access to shared
data can be managed correctly.

The first two steps of the dependency analysis have focused on how the original
problem’s computation was divided into tasks (the task decomposition). This step also
takes into consideration the associated data decomposition, that is, the division of the
problem’s data into chunks that can be updated independently, each associated with one
or more tasks that handle the update of that chunk. This chunk of data is sometimes
called “task-local” data (or just “local” data), since it is tightly coupled to the task(s)
responsible for its update.

It is rare, however, that each task can operate using only its own local data; data
may need to be shared among tasks in many ways. Two of the most common situations
are the following:

o Inaddition to task-local data, the problem’s data decomposition may define some
data that must be shared among tasks; for example, the tasks may need to coop-
eratively update a large shared data structure. Such data cannot be identified with
any given task; it is inherently global to the problem. This shared data is modi-
fied by multiple tasks and therefore serves as a source of dependencies between
the tasks.

e Data dependencies can also occur when one task needs access to some portion of
another task’s local data. The classic example of this type of data dependency oc-
curs in finite difference methods parallelized using a data decomposition, where
each point in the problem space is updated using values from nearby points and
therefore updates for one chunk of the decomposition require values from the
boundaries of neighboring chunks.

The DataSharing Pattern 26

This pattern discusses data sharing in parallel algorithms and how to deal with
typical forms of shared data.

Applicability:
Use this pattern when

e You have decomposed the problem in terms of both tasks and data (task decom-
position and data decomposition), have decided how to combine the tasks into
groups (as discussed in the GroupTasks pattern), and have determined what or-
dering constraints apply among groups (as discussed in the OrderTasks pattern).

Implementation:

The goal of this pattern is to identify what data is shared among groups of tasks and
how to manage access to shared data in a way that is both correct and efficient.

Data sharing can have major implications for both the correctness and the efficiency
of your program:

o If the sharing is done incorrectly, a task may get invalid data; this happens often
in shared-address-space environments, where a task can read from a memory
location before the write of the expected data has completed.

e Guaranteeing that shared data is ready for use can lead to excessive synchro-
nization overhead. For example, you can in many cases force a desired order by
putting barrier operations before reads of shared data, but this can be very inef-
ficient if many units of execution'® (UEs) wait at a barrier that is only needed to
properly synchronize execution of a few UEs. A much better strategy is to use
a combination of copying into local data or restructuring tasks to minimize the
number of times shared data must be read.

e Another source of data-sharing overhead is communication. In some parallel sys-
tems, any access to shared data implies the passing of a message between units of
execution. You can sometimes avoid this problem by overlapping communica-
tion and computation, but this isn’t always possible. Frequently, a better choice
is to structure your algorithm and the way you define tasks so that the amount of
shared data to communicate is minimized. Another approach is to give each unit
of execution its own copy of the shared data; this requires some care to be sure
that the copies are kept consistent in value but can be more efficient.

The goal, therefore, is to manage shared data enough to ensure correctness but
not so much as to interfere with efficiency. We suggest the following approach to
determining what data is shared and how to manage it:

18Generic term for one of a collection of concurrently-executing entities, usually either processes or
threads.

The DataSharing Pattern 27

e The first step is to identify data that is shared between tasks. The data sharing
implied by your algorithm is closely connected to the basic way you decomposed
your problem.

This is most obvious when the decomposition is predominantly a data-based
decomposition. For example, in a finite difference problem, the basic data is
decomposed into blocks. The nature of the decomposition dictates that the data
at the edges of the blocks is shared between neighboring blocks. In essence, you
worked out the data sharing when the basic decomposition was done.

In a decomposition that is predominantly task-based, the situation is more com-
plex. At some point in the definition of tasks, you needed to define how data
passed into or out of the task and whether any data was updated in the body of
the task. These are your sources of potential data sharing.

e Once you have identified any data that is shared, you need to understand how the
data will be used. Shared data falls into one of the following three categories:

— Read-only. The data is read but not written. Since it is not modified,
access to these values does not need to be protected. On some distributed-
memory systems, it is worthwhile to replicate the read-only data so each
unit of execution has its own copy.

— Effectively-local. The data is partitioned into subsets, each of which is
accessed (for read or write) by only one of the tasks. (An example of
this would be an array shared among tasks in such a way that its elements
are effectively partitioned into sets of task-local data.) This case gives the
programmer some options. If the subsets can accessed independently (as
would normally be the case with, say, array elements, but not necessarily
with list elements), then the programmer need not worry about protecting
access to this data. On distributed-memory systems, such data would usu-
ally be distributed among UEs, with each UE having only the data needed
by its tasks. If necessary, the data can be recombined into a single data
structure at the end of the computation.

— Read/write. The data is both read and written and is accessed by more
than one task. This is the general case, and includes arbitrarily complicated
situations in which data is read from and written to by any number of tasks.
It is the most difficult to deal with, since any access to the data (read or
write) must be protected with some type of exclusive-access mechanism
(locks, semaphores, etc.), which can be very expensive.

Two special cases of read/write data are common enough to deserve special men-
tion:

— Accumulate. The data is being used to accumulate a result (i.e., is being
used to compute a reduction). For each location in the shared data, the
values are updated by multiple tasks, with the update taking place through
some sort of associative accumulation operation. The most common cases

The DataSharing Pattern 28

for the accumulation operations are sum, minimum, and maximum, but
any associative pairwise operation will do. For such data, each task (or,
usually, each UE) has a separate copy; the accumulations occur into these
local copies, which are then accumulated into a single global copy as a final
step at the end of the computation.

— Multiple-read/single-write. The data is read by multiple tasks (all of
which need its initial value) but modified by only task (which can read
and write its value arbitrarily often). Such variables occur frequently in al-
gorithms based on data decompositions. For data of this type, at least two
copies are needed, one to preserve the initial value and one to be used by
the modifying task; the copy containing the initial value can be discarded
at the end of the computation. On distributed-memory systems, typically a
copy is created for each task needing access (read or write) to the data.

Examples:
Molecular dynamics.

In the “Examples” section of the DependencyAnalysis pattern® we described the prob-
lem of designing a parallel molecular dynamics program. We then identified the task
groups (in the GroupTasks pattern) and considered temporal constraints between the
task groups (in the OrderTasks pattern). We will ignore the temporal constraints for
now and just focus on data sharing for the problem’s final task groups:

e The group of tasks to find the “bonded forces” (vibrational forces and rotational
forces) on each atom.

e The group of tasks to find the long-range forces on each atom.
e The group of tasks to update the position of each atom.

e The task to update the neighbor list for all the atoms (which trivially constitutes
a task group).

When you analyze the computations taking place with each of these groups, you
find the following shared data:

e The atomic coordinates, used by each group.

These coordinates are treated as read-only data by the bonded force group, the
long-range force group, and the neighbor-list update group. This data is read/write
for the position update group. Fortunately, the position update group executes
alone after the other three groups are done (based on the ordering constraints
developed using the OrderTasks pattern). Hence, in the first three groups we
can leave accesses to the position data unprotected or even replicate it. For the
position update group, the position data belongs to the read/write category, and
access to this data will need to be controlled carefully.

19Gection 5 of this paper.

The DesignEvaluation Pattern 29

e The force array, used by each group except for the neighbor-list update.

This array is used as read-only data by the position update group and as accumu-
late data for the bonded and long-range force groups. Since the position update
group must follow the force computations (as determined using the OrderTasks
pattern), we can put this array in the accumulate category for the force groups
and in the read-only category for the position update group.

e The neighbor list, shared between the long-range force group and the neighbor-
list update group.

This list is used by the long-range-force and neighbor-list update groups. It is
essentially-local data for the neighbor-list update group and read-only data for
the long-range force computation.

9 TheDesignEvaluation Pattern

Intent:

In this pattern, we evaluate the design so far, and decide whether to revisit the design
or move on to the next design space.

M otivation:

The patterns in the FindingConcurrency design space have helped the designer expose
the concurrency in his or her problem. In particular, the original problem has been
analyzed to produce:

e A task decomposition that identifies tasks that can execute concurrently.

e A data decomposition that identifies data local to each task.

e A way of grouping tasks and ordering the groups to satisfy temporal constraints.
e An analysis of dependencies among tasks.

We will use this information in the next design space — the AlgorithmStructure de-
sign space?> — to construct an algorithm that can exploit this concurrency in a parallel
program.

In some cases, the concurrency is straightforward and there is clearly a best way to
decompose a problem to expose it. More commonly, however, there are many ways to
decompose a problem into tasks. Choosing one may require tradeoffs between three
criteria of a good design: simplicity, flexibility, and efficiency. Unfortunately, there is
no foolproof way to be sure that you have defined the right set of tasks or even that
the tasks have been correctly grouped. The design process is inherently iterative. This
pattern will help you decide evaluate your design and decide whether to move on to the
next design space or revisit the decomposition.

20The second major part of our pattern language, available as a collection of documents linked from
http://ww. ci se. ufl.edu/ research/ Parall el Patterns.

The DesignEvaluation Pattern 30

Applicability:
Use this pattern when

e You have decomposed the problem into tasks that can execute concurrently (us-
ing the DecompositionStrategy pattern®') and determined their dependencies
(using the DependencyAnalysis pattern®?).

I mplementation:

This pattern has two goals: to evaluate the design so far (with the possible result that
the programmer decides to revisit and possible revise decisions made thus far) and to
prepare for the next phase of the design process. We therefore describe how to evaluate
the design from three perspectives: suitability for the target platform, design quality,
and preparation for the next phase of the design.

Suitability for Target Platform.

While it is desirable to delay mapping a program onto a particular target platform as
long as possible, the characteristics of the target platform do need to be considered at
least minimally while evaluating your design. Below are some issues relevant to the
choice of target platform or platforms.

HOwW MANY PROCESSING ELEMENTS ARE AVAILABLE?

With some exceptions, having many more tasks than processing elements®® (PEs)
makes it easier to keep all the PEs busy. Obviously we can’t make use of more PEs
than we have tasks, but having only one, or a few, tasks per PE can lead to poor load
balance?*. For example, consider the case of a Monte Carlo simulation in which a
calculation is repeated over and over for different sets of randomly chosen data, such
that the time taken for the calculation varies considerably depending on the data. A
natural approach to developing a parallel algorithm would be to treat each calculation
(for a separate set of data) as a task; these tasks are then completely independent and
can be scheduled however we like. But since the time for each task can vary consider-
ably, unless there are many more tasks than PEs it will be difficult to achieve good load
balance.

The exceptions to this rule are designs in which the number of tasks can be adjusted
to fit the number of PEs in such a way that good load balance is maintained. An
example of such a design is the block-based matrix multiplication algorithm described
in the “Examples” section of the DataDecomposition pattern>: Tasks correspond to

21gection 2 of this paper.

22Zection 5 of this paper.

23Generic term used to reference a hardware element in a parallel computer that executes a stream of
instructions.

24| oad balance s the degree to which work is evenly distributed anong available PEs. A parallel program
executes most quickly when it is perfectly load balanced; that is, when work is divided among PEs such that
all PEs complete their assigned tasks at the same time.

25Section 4 of this paper.

The DesignEvaluation Pattern 31

blocks, and all the tasks involve roughly the same amount of computation, so adjusting
the number of tasks to be equal to the number of PEs produces an algorithm with
good load balance. (Note, however, that even in this case it might be advantageous to
have more tasks than PEs, if for example that would allow overlap of computation and
communication.)

HOW ARE DATA STRUCTURES SHARED AMONG PROCESSING ELEMENTS?

A design that involves large-scale or fine-grained data sharing among tasks will be eas-
ier to implement and more efficient if all tasks have access to the same memory. Ease
of implementation depends on programming environment; an environment based on
shared-memory model (all units of execution?® share an address space) makes it easier
to implement a design requiring extensive data sharing. Efficiency depends also on the
target machine; a design involving extensive data-sharing is likely to be more efficient
on a symmetric multiprocessor (where access time to memory is uniform across pro-
cessors) than on a machine that layers a shared-memory environment over physically
distributed memory. In contrast, if you plan to implement your design using a message-
passing environment running on a distributed-memory architecture, a design involving
extensive data sharing is likely not a good choice.

For example, consider the task-based approach to medical imaging problem de-
scribed in the “Examples” section of the TaskDecomposition pattern. This design
requires that all tasks have read access to a potentially very large data structure (the
body model), which presents no problems in a shared-memory environment but in a
distributed-memory environment can require prohibitive amounts of memory or com-
munication.

A design that requires fine-grained data-sharing (in which the same data structure
is accessed repeatedly by many tasks, particularly when both reads and writes are in-
volved) is also likely to be more efficient on a shared-memory machine, because the
overhead required to protect each access is likely to be smaller than for a distributed-
memory machine.

The only exceptions to these principles would be problems in which it is easy to
group and schedule tasks in such a way that the only large-scale or fine-grained data
sharing is among tasks assigned to the same unit of execution.

WHAT DOES THE TARGET ARCHITECTURE IMPLY ABOUT THE NUMBER OF UNITS
OF EXECUTION AND HOW STRUCTURES ARE SHARED AMONG THEM?

In essence, this question asks you to revisit the preceding two questions, but in terms of
units of execution (UEs) rather than processing elements (PES). This can be an impor-
tant distinction to make if the target system supports multiple UEs per PE, particularly
if the target system emphasizes the use of multitasking to hide latency (an example of
such a system is the Tera machine).

There are two factors to keep in mind when considering whether a design using
more than one UE per PE makes sense.

28 Generic term for one of a collection of concurrently-executing entities, usually either processes or
threads.

The DesignEvaluation Pattern 32

The first factor is whether the target system provides efficient support for multiple
UEs per PE. Some systems do provide such support (an example is the Tera machine,
which was designed to provide efficient support for many more threads (UEs) than
processors (PEs)). Other systems do not (an example is an MPP system with one
processor per node and slow context-switching, where multiple processes (UEs) per
processor (PE) are likely to be inefficient).

The second factor is whether the design can make good use of multiple UEs per PE.
For example, if the design involves coordination operations with high latency, it might
be possible to mask that latency by assigning multiple UEs to each PE. If however
the design involves coordination operations that are tightly synchronized (e.g., pairs of
blocking send/receives) and relatively efficient, assigning multiple UEs to each PE is
more likely to interfere with ease of implementation (by requiring extra effort to avoid
deadlock) than to improve efficiency.

ON THE TARGET PLATFORM, WILL THE TIME SPENT DOING USEFUL WORK IN A
TASK BE SIGNIFICANTLY GREATER THAN THE TIME TAKEN TO DEAL WITH DEPEN-
DENCIES?

A critical factor in determining whether a design is effective is the ratio of time spent
doing computation to time spent managing data dependencies (“coordination” — i.e.,
synchronization or communication among processing elements): The higher the ratio,
the more efficient the program. This ratio is affected not only by the number and type
of coordination events required by the design but also by the characteristics of the
target platform. For example, a message-passing design that is acceptably efficient on
an MPP with a fast interconnect network and relatively slow processors will likely be
less efficient, perhaps unacceptably so, on an Ethernet-connected network of powerful
workstations.

Note also that this critical ratio is also frequently affected by problem size relative
to the number of available processing elements, since for a given problem size the time
spent by each processor doing computation decreases with the number of processors,
while the time spent by each processor doing coordination may stay the same or even
increase as the number of processors increases.

Design Quality.

Keeping these characteristics of the target platform in mind, we can evaluate the design
along the three dimensions of flexibility, efficiency, and simplicity.

FLEXIBILITY.

You would like your high level design to be adaptable to a variety of different imple-
mentation requirements, and certainly all the ones that you care about. The following
is a partial checklist of factors that affect flexibility.

e |s your decomposition flexible in the number of tasks generated? Such flexibility
allows your design to be adapted to a wide range of parallel computers.

The DesignEvaluation Pattern 33

o Isthe definition of tasks implied by your task decomposition independent of how
they are scheduled for execution? Such independence makes the load balancing
problem easier to solve.

e Can the size and number of chunks in your data decomposition be parameter-
ized? Such parameterization makes a design easier to scale for varying numbers
of processing elements.

e Does your algorithm handle the problem’s boundary cases? A good design will
handle all relevant case, even unusual ones.

For example, a common operation is to transpose a matrix such that a distribution
in terms of blocks of matrix columns becomes a distribution in terms of blocks of
matrix rows. It’s easy to write down the algorithm and code it for square matrices
where the matrix order is evenly divided by the number of processing elements.
But what if the matrix is not square, or what if the number of rows is much
greater than the number of columns and neither number is evenly divided by the
number of nodes? This requires significant changes to the transpose algorithm.
For a rectangular matrix, for example, the buffer that will hold the matrix block
will need to be large enough to hold the larger of the two blocks. If either the
row or column dimension of the matrix is not evenly divisible by the number
of nodes, then the blocks will not be the same size on each node. Can your
algorithm deal with the uneven load that will result from having different block
sizes on each node?

EFFICIENCY.

You would like your program to effectively utilize the available computing resources.
The following is a partial list of important factors to check. Note that typically it is not
possible to simultaneously optimize all of these factors; design tradeoffs are inevitable.

e Can the computational load be evenly balanced among the processing elements?
This is easier if the tasks are independent, or if they are roughly the same size.

e Is the overhead minimized?

Overhead can come from several sources, including thread creation and schedul-
ing, communication, and synchronization.

Thread creation and scheduling involve overhead, so you should make sure that
each thread has enough work to do to justify this overhead. On the other hand,
more threads allow for better load balance.

Communication can also be a source of significant overhead, particularly in plat-
forms that use message-passing; message transfer typically involves both over-
head due to kernel calls and latency due to the time it takes the message to travel
over the network. While network latency can sometimes be hidden by over-
lapping it with computation, to minimize the overhead due to kernel calls, the
number of messages to be sent should be minimized. Even on shared-memory
multiprocessors, data should be localized as much as possible.

The DesignEvaluation Pattern 34

Synchronization is required whenever a dependency requires one task to wait
for another — either because the result is needed, or to avoid race conditions.
Designs that minimize dependencies may reduce synchronization overhead.

SIMPLICITY.

To paraphrase Einstein: Make it as simple as possible, but not simpler.

Keep in mind that you will ultimately need to debug any program you write. A
design — even a generally superior design — will not do you any good if you cannot
debug, maintain, and verify the correctness of the final program.

The medical imaging example given in the DecompositionStrategy pattern is an
excellent case in point in support of the value of simplicity. In this problem a large
database could be decomposed, but this decomposition would force the parallel algo-
rithm to include complex operations for passing a simulation point from one database
chunk to another. This complexity makes the resulting program much more difficult
to understand and greatly complicates debugging. The other approach, replicating the
database, leads to a vastly simpler parallel program in which completely independent
tasks can be passed out to multiple workers as they are read. All complex communi-
cation thus goes away, and the parallel part of the program is trivial to debug and/or
reason about.

Preparation for Next Phase.

The problem decomposition carried out with the FindingConcurrency patterns serves
to prepare for the next design space. Many of the key issues that determine a high-
quality problem decomposition cannot be described, let alone resolved, until you start
working with the AlgorithmStructure patterns. However, here are some key issues to
keep in mind as you enter the next design space.

HOW REGULAR ARE THE TASKS AND THEIR DATA DEPENDENCIES?

In other words, do they vary widely among themselves? If so, the scheduling of the
tasks and their sharing of data may be an important issue. In a regular decomposi-
tion, all the tasks are in some sense the same — roughly the same computation (on
different sets of data), roughly the same dependencies on data shared with other tasks,
etc. Examples include the various matrix multiplication algorithms described in the
“Examples” sections of the TaskDecomposition and DataDecomposition patterns.

In an irregular decomposition, the work done by each task and/or the data depen-
dencies vary among tasks. For example, consider a discrete-event simulation of a large
system consisting of a number of distinct components. We might design a parallel
algorithm for this simulation by defining a task for each component and having them
interact based on the discrete events of the simulation. This would be a very irregular
design in that there would be considerable variation among tasks with regard to work
done and dependencies on other tasks.

The DesignEvaluation Pattern 35

ARE INTERACTIONS BETWEEN TASK S (OR TASK GROUPS) SYNCHRONOUS OR ASY N-
CHRONOUS?

(Note this question is closely related to that of regular versus irregular.)

In some designs, the interaction between tasks is also very regular with regard to
time —i.e., it is synchronous. For example, a typical approach to parallelizing a linear-
algebra problem involving the update of a large matrix is to partition the matrix among
tasks and have each task update “its” part of the matrix, using data from both “its” and
other parts of the matrix. Assuming that all the data needed for the update is present at
the start of the computation, these tasks will typically first exchange information and
then compute independently. Another type of example is a pipeline computation, in
which we perform a multi-step operation on a sequence of sets of input data by setting
up an assembly line of tasks (one for each step of the operation), with data flowing
from one task to the next as each task accomplishes its work. This approach works best
if all of the tasks stay more or less in step — i.e., if their interaction is synchronous.

In other designs, the interaction between tasks is not so chronologically regular.
An example is the discrete-event simulation described previously (in the discussion of
regular versus irregular), in which the events that lead to interaction between tasks may
be chronologically irregular.

ARE THE TASKS GROUPED IN THE BEST WAY ?

The temporal relations are easy: Tasks that can run at the same time are naturally
grouped together. But an effective design will also group tasks together based on their
logical relationship in the overall problem.

As an example of grouping tasks, consider the molecular dynamics problem dis-
cussed in the “Examples” section of the DependencyAnalysis pattern®’. The grouping
we eventually arrive at (in the GroupTasks pattern 28) is hierarchical: groups of related
tasks based on the high-level operations of the problem, further grouped on the basis
of which ones can execute concurrently. Such an approach makes it easier to reason
about whether the design meets the necessary constraints (since the constraints can be
stated in terms of the task groups defined by the high-level operations) while allowing
for scheduling flexibility.

Acknowledgments

We thank Alan O’Callaghan for his helpful and insightful comments during the PLoP
shepherding process and the members of our PLoP workshop group for their additional
comments. We also thank Intel Corporation, the National Science Foundation (grant
#9704697), and the Air Force Office of Scientific Research (grant #4514209-12) for
their financial support.

27Section 5 of this paper.
283ection 6 of this paper.

References 36

References

[1] T. G. Mattson. The efficiency of Linda for general purpose scientific programming.
Scientific Programming, 3:61-71, 1994.

[2] T.G. Mattson. Scientific computation. In A. Zomaya, editor, Parallel and Dis-
tributed Computing Handbook. McGraw Hill, 1996.

