
CSCI 3366 August 26, 2005

Slide 1

Administrivia

• One purpose of the syllabus is to spell out policies, especially about:

– Course requirements and grading.

– Exam or other dates (can only be changed if you all agree). “Please plan

accordingly” means “don’t schedule something else for these dates”.

– Late work.

– Academic integrity.

• Most other information will be on the Web, either on my home page (office

hours) or the course Web page.

Slide 2

More Administrivia

• Part of my job is to answer your questions outside class, so if you need help,

please ask! in person or by e-mail or phone.



CSCI 3366 August 26, 2005

Slide 3

More Administrivia

• Why are we using “my” book when there are books that are more

textbook-like? because (1) I think it emphasizes the right things, which many

textbooks don’t, and (2) learning from a not-really-a-textbook and other

resources should be good practice for whatever you do after you graduate.

(I don’t actually think I’m going to be able to retire on the extra royalty income

— but it might be enough to finance a trip to Java City for the class?)

Also — if you spot errors, even typos, please let me know. The first person to

report any legitimate error I don’t know about is eligible for extra-credit points.

Slide 4

A Few Words About Computer Use in Class

• Checking your e-mail when you first get here is okay.

• Taking notes online is okay.

• Surfing the Web or playing games during lecture is not okay.

• Remember that I can lock all screens, project what’s on one student’s screen,

etc. — and I will if need be. But I’d rather you’d all be responsible enough to

resist this distraction!



CSCI 3366 August 26, 2005

Slide 5

What is Parallel/Distributed Computing?

• Some computational jobs are just too much for one processor — no way to

get them done in reasonable time.

• For jobs done by people, what do you do when the job is too much for one

person?

Slide 6

What is Parallel/Distributed Computing?

• For jobs done by people, if too much for one person you assign a team — but

you have to figure out

– How to divide up work among team members.

– How to coordinate activities of team members.

• Same idea applies to computing — if too much for one processor, use multiple

processors. Issues are similar — how to divide up work, how to coordinate.



CSCI 3366 August 26, 2005

Slide 7

Simple Examples

• “People job” examples:

– Digging a hole.

– Building a house.

– Baby.

What do you notice about the last one in particular?

• Computer examples:

– Adding up a lot of numbers.

– Computing Fibonacci numbers.

But these don’t seem too “big” . . .

Slide 8

How Much Calculating is “A Lot”?

• Examples from computational biology — how many operations per second

are needed to get things done fast enough to be useful?:

– Sequence the genome — 1012 ops/second (500 2-Gigahertz processors).

– Protein/protein interactions — 1014 ops/second (25,000 4-Gigahertz

processors).

– Simulating whole-body response to a drug — 1016 operations/second

(1,250,000 8-Gigahertz processors).

• (Source — Intel’s former life sciences industry manager.)



CSCI 3366 August 26, 2005

Slide 9

How Much Calculating is “A Lot”?

• Simplified example — weather simulation:

Divide earth’s surface into 1-square-km cells (about 5× 108 of them);

examine from surface to 14 km out. Gives 7.5× 109 3D cells.

Typically need to update least five variables per cell (temperature, humidity,

wind (3D), etc.). So, 37.5× 109 updates.

To model 24 hours in 1-minute chunks: 86400 minutes. Total of 3.24× 1015

updates.

Optimistically assuming 109 updates per second, 3.24× 106 seconds —

900 hours.

• (Adapted from example by Dr. Eggen.)

Slide 10

What Are Some Other Hard Problems?

• Crash simulation / structural analysis.

• Oil exploration.

• Explosion simulations (why Los Alamos is interested).

• Astrophysics simulations (e.g,, Dr. Lewis’s work on Saturn’s rings).

• Fluid dynamics.

• “Rendering” for computer-generated animation.

• And many others . . .



CSCI 3366 August 26, 2005

Slide 11

The Need for Speed

• Solving the same problems faster — reducing wall-clock time.

• Solving bigger problems.

• Solving problems more exactly — to get better answers, need more detail,

hence more processing.

Slide 12

Can’t You Just Get a Faster Computer?

• Up to a point — yes. Moore’s law predicts that processor speed and memory

both double about every 1.5 years. Over 30 years, that’s a factor of about a

million!

• But . . .

– As you know — however fast processors are, it’s never fast enough.

– Faster is more expensive, and price/performance is not constant.

– Eventually we’ll run into physical limitations on hardware — speed of light

limits how fast we can move data along wires (in copper, light moves 9 cm

in a nanosecond — one “cycle” for a 1GHz processor), other factors limit

how small we can make chips. (We may be there — cf. Intel’s

announcement last year.)

– Maybe we can switch to biological computers or quantum computers, but

those are pretty big paradigm shifts . . .



CSCI 3366 August 26, 2005

Slide 13

“The Answer” — Parallel Computing

• Analogous to “team of people” idea — if one processor isn’t fast enough, use

more than one.

• Also useful when there’s something “inherently parallel” about the problem —

e.g., operating systems, GUI-based applications, etc.

• http://www.top500.org tracks fastest computers; for many years

now all have been “massively parallel”.

Slide 14

But I Don’t Want To Solve Problems Like Those!

• What if you aren’t interested in solving problems like these “grand challenge”

problems, Is there still a reason to be interested in parallel computing?

• The hardware is there, and it’s becoming mainstream — multicore chips,

hyperthreading, etc. (The Intel person says “the chip makers can put more

and more transistors on a chip, and this is the best way to use that.”)

To get best use of it for single applications, will probably need parallelism.

• Also, for some applications, thinking of them as parallel/multithreaded can

lead to a solution that lets you do something useful while waiting for I/O, etc.



CSCI 3366 August 26, 2005

Slide 15

About the Course

• Can think of this course as the equivalent of PAD I for parallel (and to some

extent concurrent and distributed) programming. As with PAD I, many things

to learn all at once:

– A new “box of tools” — or several boxes of tools (different

languages/libraries/paradigms). Must learn syntax/functions, plus tools

such as compilers and runtime systems.

– How to use the stuff in the box of tools to solve interesting problems —

from low-level “what is this syntax good for?” to algorithm design.

– How to think about “does it work?”

– How to think about “how fast is it?”

• Also as with PAD I, the idea will be to teach a mix of technical skills and basic

concepts, with emphasis on learning by doing.

Slide 16

Minute Essay

• What are your goals for this course?

• Are you reasonably comfortable with Java and C? How about C++?

• Do you have any experience already with parallel or multithreaded

programming? (If so, tell me about it, briefly.)

• Will it be a problem for you if I assign homework that will be hard to do without

access to our Linux lab machines?


