
CSCI 3366 September 2, 2005

Slide 1

Administrivia

• Classes next week: I plan to be at a conference but may be able to find a

guest lecturer. I’ll notify you via the course Web page and e-mail.

• Homework 1 to be on Web by next week. Due the following week.

Slide 2

Recap — Current Hardware for Parallel Programming

• One category — multiple CPUs sharing access to a common memory.

• Another category — multiple CPUs, each with separate memory,

communicating over interconnection network.



CSCI 3366 September 2, 2005

Slide 3

Recap — Programming Models

• Shared-memory model — concurrently-executing threads sharing address

space. Various ways to communicate / synchronize.

• Distributed-memory model — concurrently-executing processes, each with

separate address space, communicating by sending / receiving messages.

Slide 4

What Programming Languages Support These Models?

• A regular sequential language, with a parallelizing compiler. Attractive, but

such compilers are not easy.

• A language designed to support parallel programming (Java, Ada, PCN).

Perhaps the most expressive, but more work for programmers and

implementers.

• A regular sequential language plus calls to parallel library functions (PVM,

MPI, Pthreads). More familiar for users, easier to implement.

• A regular sequential language with some added features (CC++, OpenMP).

Also familiar for users, can be difficult to implement.

• (For a list of “programming environments”, see Table 2.1 in book.)



CSCI 3366 September 2, 2005

Slide 5

Parallel Programming Environments

• By “programming environments” we mean languages / libraries / extensions.

There are many!

• For our book we chose one of each:

– MPI (library) because it’s something of a standard for message-passing

programming.

– OpenMP (language extension) because it’s emerging as a standard for

shared-memory programming.

– Java because it’s widely available and might be many people’s first

exposure to parallel programming.

• Other popular programming environments — POSIX threads (Pthreads),

Win32 API, PVM, . . .

Slide 6

Sketch of Parallel Algorithm Development

• Start with understanding of problem to be solved / application.

• Decompose computation into “tasks” — snippets of sequential code that you

might be able to execute concurrently.

• Analyze tasks and data — how do tasks depend on each other? what data do

they access (local to task and shared)?

(Or start with decomposition of data and infer tasks from that.)

• Plan how to map tasks onto “units of execution” (threads/processes) and

coordinate their execution. Also plan how to map these onto “processing

elements”.

• Translate this design into code.

• Our book organizes all of this into four “design spaces”. For this course, we’ll

start at the bottom and work up, so we can start writing code now!



CSCI 3366 September 2, 2005

Slide 7

Basics of Message-Passing Programming

• Idea of message-passing programming is simple:

An executing program consists of a bunch of “processes” running

concurrently. Usually one per processor (PE), but could be more. (Why?)

They communicate by sending/receiving messages. Simplest form is “point to

point” — process A sends a message (with some data) to process B, which

receives it. (Can also define “collective communication”.)

• And then there are many interesting details — can sending process proceed

without waiting? what happens if you try to receive a message and it hasn’t

been sent? etc., etc.

Slide 8

MPI — the Message Passing Interface

• Idea was to come up with a single standard (concepts and library) for

message-passing programs, then allow many implementations. Similar to

language standards (C, C++, etc.). Good for portability.

• MPI Forum — international consortium — began work in 1992. MPI 1.1 and

MPI 2.0 standards defined. Huge! 1.1 specification is 500+ pages.

• Reference implementation — MPICH (Argonne National Lab). Another

popular and free implementation (installed here) — LAM/MPI (Local Area

Multicomputer).



CSCI 3366 September 2, 2005

Slide 9

What’s an MPI Program Like?

• “SPMD” (Single Program, Multiple Data) model — many processes, all

running the same source code, but each with its own memory space and

each with a different ID. Could take different paths through the code

depending on ID.

• Source code in C/C++/Fortran, with calls to MPI library functions.

• How programs get started isn’t specified by the standard! (for

historical/political reasons — some early target platforms were very

restrictive, would not have supported what academic-CS types wanted).

Slide 10

What’s in the MPI Library?

• Setup and bookkeeping — initialization, cleanup, environment query, etc.

• Data management — pack/unpack, derived data types.

• Point-to-point communication — several varieties, differing mostly in how

much synchronization.

• Collective operations — e.g., broadcast.



CSCI 3366 September 2, 2005

Slide 11

MPI “Communicators”

• (One more thing to define before we can write simple code.)

• MPI allows grouping processes; group plus associated context called a

“communicator”. Makes it easier to write “safe” parallel libraries.

• Predefined communicator MPI COMM WORLD includes all processes.

Programmers can create additional ones.

Slide 12

Simple Examples / Compiling and Executing

• Look at sample program hello.c. (All sample programs from class should

be on the Web, linked from course “sample programs” page, with short

instructions on how to use MPI.)

• We’ll use the LAM/MPI that comes with FC4. There should be man pages for

all commands and functions.

• Compile with mpicc.

• Before running, must “boot” (lamboot command) — start MPI background

processes on all machines to be used.

• Execute with mpirun.

• Shut down with lamhalt. (Otherwise background processes continues to

run.)



CSCI 3366 September 2, 2005

Slide 13

Simple (Blocking) Point-to-Point Communication in MPI

• Send with MPI Send — returns as soon as data has been copied to system

buffer, buffer in program can be reused.

• Receive with MPI Recv — waits until message has been received.

• Can use “tags” to distinguish between kinds of messages. Can receive

selectively or not (MPI ANY TAG). Received tag is in returned

MPI Status variable (e.g., status.MPI TAG).

• Can receive from specific sender or from any sender. (MPI ANY SOURCE).

Sender is in returned MPI Status variable (e.g.,

status.MPI SOURCE).

• For MPI Recv, “length” parameter specifies buffer length. Use

MPI Get count to get actual count.

• Look at sample program and send-recv.c.

Slide 14

Not-So-Simple Point-to-Point Communication in MPI

• For not-too-long messages and when readability is more important than

performance, MPI Send and MPI Recv are probably fine.

• If messages are long, however, buffering can be a problem, and can even

lead to deadlock. Also, sometimes it’s nice to be able to overlap computation

and communication.

• Therefore, MPI offers several other kinds of send/receive functions —

“synchronous” (blocks both sender and receiver until communication can take

place), “non-blocking” (doesn’t block at all, program must later test/wait for

communication to take place).



CSCI 3366 September 2, 2005

Slide 15

Collective Communication in MPI

• “Collective communication” operation — one that involves many processes

(typically all, or all in MPI “communicator”).

• Could implement using point-to-point message passing, but some operations

are common enough to be library functions — broadcast (MPI Bcast),

“reduction” (MPI Reduce), etc.

Slide 16

Timing MPI Programs

• “How long did it take?” often of interest. Can use system tools (e.g., time

command) to check total elapsed time. Or can time “interesting” parts of

program:

MPI Wtime returns elapsed time; call twice and subtract to find out how

long something takes (time msg.c on “sample programs” page).

• How meaningful output is depends — e.g., on whether the system is

otherwise idle. Probably best to repeat observations a few times, and do

some sort of averaging.



CSCI 3366 September 2, 2005

Slide 17

Minute Essay

• None — sign in.


