CSCI 3366 September 2, 2005

Administrivia

e Classes next week: | plan to be at a conference but may be able to find a
guest lecturer. I'll notify you via the course Web page and e-mail.

e Homework 1 to be on Web by next week. Due the following week.

Slide 1
Recap — Current Hardware for Parallel Programming
e One category — multiple CPUs sharing access to a common memory.
e Another category — multiple CPUs, each with separate memory,
communicating over interconnection network.
Slide 2




CSCI 3366 September 2, 2005

Recap — Programming Models

e Shared-memory model — concurrently-executing threads sharing address
space. Various ways to communicate / synchronize.

e Distributed-memory model — concurrently-executing processes, each with
separate address space, communicating by sending / receiving messages.

Slide 3

What Programming Languages Support These Models?

e A regular sequential language, with a parallelizing compiler. Attractive, but
such compilers are not easy.

e A language designed to support parallel programming (Java, Ada, PCN).
Perhaps the most expressive, but more work for programmers and

Slide 4 implementers.

e A regular sequential language plus calls to parallel library functions (PVM,
MPI, Pthreads). More familiar for users, easier to implement.

e A regular sequential language with some added features (CC++, OpenMP).
Also familiar for users, can be difficult to implement.

(For a list of “programming environments”, see Table 2.1 in book.)




CSCI 3366 September 2, 2005

Parallel Programming Environments

e By “programming environments” we mean languages / libraries / extensions.
There are many!
e For our book we chose one of each:

— MPI (library) because it's something of a standard for message-passing
Slide 5 programming.

— OpenMP (language extension) because it's emerging as a standard for
shared-memory programming.
— Java because it's widely available and might be many people’s first

exposure to parallel programming.

e Other popular programming environments — POSIX threads (Pthreads),
Win32 API, PVM, ...

. J

-

Sketch of Parallel Algorithm Development

e Start with understanding of problem to be solved / application.

e Decompose computation into “tasks” — snippets of sequential code that you
might be able to execute concurrently.

o Analyze tasks and data — how do tasks depend on each other? what data do
slide 6 they access (local to task and shared)?

(Or start with decomposition of data and infer tasks from that.)
e Plan how to map tasks onto “units of execution” (threads/processes) and

coordinate their execution. Also plan how to map these onto “processing
elements”.

e Translate this design into code.

e Our book organizes all of this into four “design spaces”. For this course, we'll
start at the bottom and work up, so we can start writing code now!

J




CSCI 3366 September 2, 2005

4 )

Basics of Message-Passing Programming

e |dea of message-passing programming is simple:

An executing program consists of a bunch of “processes” running

concurrently. Usually one per processor (PE), but could be more. (Why?)

They communicate by sending/receiving messages. Simplest form is “point to

Slide 7 point” — process A sends a message (with some data) to process B, which
receives it. (Can also define “collective communication”.)

e And then there are many interesting details — can sending process proceed
without waiting? what happens if you try to receive a message and it hasn'’t

been sent? etc., etc.

MPI — the Message Passing Interface

e |dea was to come up with a single standard (concepts and library) for
message-passing programs, then allow many implementations. Similar to
language standards (C, C++, etc.). Good for portability.

o MPI Forum — international consortium — began work in 1992. MPI 1.1 and
Slide 8 MPI 2.0 standards defined. Huge! 1.1 specification is 500+ pages.

e Reference implementation — MPICH (Argonne National Lab). Another
popular and free implementation (installed here) — LAM/MPI (Local Area

Multicomputer).




CSCI 3366 September 2, 2005

What’s an MPI Program Like?

® “SPMD” (Single Program, Multiple Data) model — many processes, all
running the same source code, but each with its own memory space and
each with a different ID. Could take different paths through the code
depending on ID.

Slide 9 e Source code in C/C++/Fortran, with calls to MPI library functions.

o How programs get started isn’t specified by the standard! (for
historical/political reasons — some early target platforms were very
restrictive, would not have supported what academic-CS types wanted).

What’s in the MPI Library?

Setup and bookkeeping — initialization, cleanup, environment query, etc.

Data management — pack/unpack, derived data types.

Point-to-point communication — several varieties, differing mostly in how

much synchronization.
Slide 10

Collective operations — e.g., broadcast.




CSCI 3366 September 2, 2005

MPI “Communicators”

e (One more thing to define before we can write simple code.)

o MPI allows grouping processes; group plus associated context called a
“communicator”. Makes it easier to write “safe” parallel libraries.

e Predefined communicator MP I _COMM_WORLD includes all processes.
Slide 11 Programmers can create additional ones.

Simple Examples / Compiling and Executing

e | ook at sample program hello. c. (All sample programs from class should
be on the Web, linked from course “sample programs” page, with short
instructions on how to use MPI.)

o We'll use the LAM/MPI that comes with FC4. There should be man pages for
Slide 12 all commands and functions.

e Compile withmpicec.

e Before running, must “boot” (1amboot command) — start MPI background
processes on all machines to be used.

e Execute with mpirun.

e Shut down with 1amhalt. (Otherwise background processes continues to

run.)




CSCI 3366 September 2, 2005

Simple (Blocking) Point-to-Point Communication in MPI

e Send with MPTI_Send — returns as soon as data has been copied to system
buffer, buffer in program can be reused.

e Receive with MP I _Recv — waits until message has been received.

e Can use “tags” to distinguish between kinds of messages. Can receive
Slide 13 selectively or not (MPI_ANY_TAG). Received tag is in returned
MPI_Status variable (e.g.,, status.MPI_TAG).

e Can receive from specific sender or from any sender. (MP I _ANY_SOURCE).
Sender is in returned MP I _Status variable (e.g.,
status.MPI_SOURCE).

e For MPI_Recv, “length” parameter specifies buffer length. Use
MPI_Get_count to get actual count.

e Look at sample program and send—-recv.c.

Not-So-Simple Point-to-Point Communication in MPI

e For not-too-long messages and when readability is more important than
performance, MPI_Send and MP I _Recv are probably fine.

e |f messages are long, however, buffering can be a problem, and can even
lead to deadlock. Also, sometimes it’s nice to be able to overlap computation
Slide 14 and communication.

e Therefore, MPI offers several other kinds of send/receive functions —
“synchronous” (blocks both sender and receiver until communication can take
place), “non-blocking” (doesn’t block at all, program must later test/wait for
communication to take place).




CSCI 3366 September 2, 2005

Collective Communication in MPI

e “Collective communication” operation — one that involves many processes

(typically all, or all in MPI “communicator”).

e Could implement using point-to-point message passing, but some operations
are common enough to be library functions — broadcast (MPI _Bcast),
Slide 15 “reduction” (MPT_Reduce), etc.

Timing MPI Programs

e “How long did it take?” often of interest. Can use system tools (e.g., t ime
command) to check total elapsed time. Or can time “interesting” parts of
program:

MPI_Wtime returns elapsed time; call twice and subtract to find out how

Slide 16 long something takes (t ime_msg . c on “sample programs” page).

o How meaningful output is depends — e.g., on whether the system is
otherwise idle. Probably best to repeat observations a few times, and do
some sort of averaging.




CSCI 3366

September 2, 2005

Slide 17

e None — signin.




