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Administrivia

• Classes next week: I plan to be at a conference but may be able to find a

guest lecturer. I’ll notify you via the course Web page and e-mail.

• Homework 1 to be on Web by next week. Due the following week.

Slide 2

Recap — Current Hardware for Parallel Programming

• One category — multiple CPUs sharing access to a common memory.

• Another category — multiple CPUs, each with separate memory,

communicating over interconnection network.
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Recap — Programming Models

• Shared-memory model — concurrently-executing threads sharing address

space. Various ways to communicate / synchronize.

• Distributed-memory model — concurrently-executing processes, each with

separate address space, communicating by sending / receiving messages.
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What Programming Languages Support These Models?

• A regular sequential language, with a parallelizing compiler. Attractive, but

such compilers are not easy.

• A language designed to support parallel programming (Java, Ada, PCN).

Perhaps the most expressive, but more work for programmers and

implementers.

• A regular sequential language plus calls to parallel library functions (PVM,

MPI, Pthreads). More familiar for users, easier to implement.

• A regular sequential language with some added features (CC++, OpenMP).

Also familiar for users, can be difficult to implement.

• (For a list of “programming environments”, see Table 2.1 in book.)
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Parallel Programming Environments

• By “programming environments” we mean languages / libraries / extensions.

There are many!

• For our book we chose one of each:

– MPI (library) because it’s something of a standard for message-passing

programming.

– OpenMP (language extension) because it’s emerging as a standard for

shared-memory programming.

– Java because it’s widely available and might be many people’s first

exposure to parallel programming.

• Other popular programming environments — POSIX threads (Pthreads),

Win32 API, PVM, . . .
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Sketch of Parallel Algorithm Development

• Start with understanding of problem to be solved / application.

• Decompose computation into “tasks” — snippets of sequential code that you

might be able to execute concurrently.

• Analyze tasks and data — how do tasks depend on each other? what data do

they access (local to task and shared)?

(Or start with decomposition of data and infer tasks from that.)

• Plan how to map tasks onto “units of execution” (threads/processes) and

coordinate their execution. Also plan how to map these onto “processing

elements”.

• Translate this design into code.

• Our book organizes all of this into four “design spaces”. For this course, we’ll

start at the bottom and work up, so we can start writing code now!
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Basics of Message-Passing Programming

• Idea of message-passing programming is simple:

An executing program consists of a bunch of “processes” running

concurrently. Usually one per processor (PE), but could be more. (Why?)

They communicate by sending/receiving messages. Simplest form is “point to

point” — process A sends a message (with some data) to process B, which

receives it. (Can also define “collective communication”.)

• And then there are many interesting details — can sending process proceed

without waiting? what happens if you try to receive a message and it hasn’t

been sent? etc., etc.
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MPI — the Message Passing Interface

• Idea was to come up with a single standard (concepts and library) for

message-passing programs, then allow many implementations. Similar to

language standards (C, C++, etc.). Good for portability.

• MPI Forum — international consortium — began work in 1992. MPI 1.1 and

MPI 2.0 standards defined. Huge! 1.1 specification is 500+ pages.

• Reference implementation — MPICH (Argonne National Lab). Another

popular and free implementation (installed here) — LAM/MPI (Local Area

Multicomputer).
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What’s an MPI Program Like?

• “SPMD” (Single Program, Multiple Data) model — many processes, all

running the same source code, but each with its own memory space and

each with a different ID. Could take different paths through the code

depending on ID.

• Source code in C/C++/Fortran, with calls to MPI library functions.

• How programs get started isn’t specified by the standard! (for

historical/political reasons — some early target platforms were very

restrictive, would not have supported what academic-CS types wanted).
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What’s in the MPI Library?

• Setup and bookkeeping — initialization, cleanup, environment query, etc.

• Data management — pack/unpack, derived data types.

• Point-to-point communication — several varieties, differing mostly in how

much synchronization.

• Collective operations — e.g., broadcast.
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MPI “Communicators”

• (One more thing to define before we can write simple code.)

• MPI allows grouping processes; group plus associated context called a

“communicator”. Makes it easier to write “safe” parallel libraries.

• Predefined communicator MPI COMM WORLD includes all processes.

Programmers can create additional ones.
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Simple Examples / Compiling and Executing

• Look at sample program hello.c. (All sample programs from class should

be on the Web, linked from course “sample programs” page, with short

instructions on how to use MPI.)

• We’ll use the LAM/MPI that comes with FC4. There should be man pages for

all commands and functions.

• Compile with mpicc.

• Before running, must “boot” (lamboot command) — start MPI background

processes on all machines to be used.

• Execute with mpirun.

• Shut down with lamhalt. (Otherwise background processes continues to

run.)
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Simple (Blocking) Point-to-Point Communication in MPI

• Send with MPI Send — returns as soon as data has been copied to system

buffer, buffer in program can be reused.

• Receive with MPI Recv — waits until message has been received.

• Can use “tags” to distinguish between kinds of messages. Can receive

selectively or not (MPI ANY TAG). Received tag is in returned

MPI Status variable (e.g., status.MPI TAG).

• Can receive from specific sender or from any sender. (MPI ANY SOURCE).

Sender is in returned MPI Status variable (e.g.,

status.MPI SOURCE).

• For MPI Recv, “length” parameter specifies buffer length. Use

MPI Get count to get actual count.

• Look at sample program and send-recv.c.
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Not-So-Simple Point-to-Point Communication in MPI

• For not-too-long messages and when readability is more important than

performance, MPI Send and MPI Recv are probably fine.

• If messages are long, however, buffering can be a problem, and can even

lead to deadlock. Also, sometimes it’s nice to be able to overlap computation

and communication.

• Therefore, MPI offers several other kinds of send/receive functions —

“synchronous” (blocks both sender and receiver until communication can take

place), “non-blocking” (doesn’t block at all, program must later test/wait for

communication to take place).
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Collective Communication in MPI

• “Collective communication” operation — one that involves many processes

(typically all, or all in MPI “communicator”).

• Could implement using point-to-point message passing, but some operations

are common enough to be library functions — broadcast (MPI Bcast),

“reduction” (MPI Reduce), etc.
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Timing MPI Programs

• “How long did it take?” often of interest. Can use system tools (e.g., time

command) to check total elapsed time. Or can time “interesting” parts of

program:

MPI Wtime returns elapsed time; call twice and subtract to find out how

long something takes (time msg.c on “sample programs” page).

• How meaningful output is depends — e.g., on whether the system is

otherwise idle. Probably best to repeat observations a few times, and do

some sort of averaging.
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Minute Essay

• None — sign in.


