
CSCI 3366 September 14, 2005

Slide 1

Administrivia

• Homework 1 due Friday (11:59pm). Submit code and timings by e-mail.

Questions? Remember I have “open lab” this afternoon, and office hours

tomorrow afternoon.

• Also notice that the “useful links” page is no longer blank.

Slide 2

More Background — A Few Words About Performance

• If the point is to “make the program run faster” — can we quantify that?

• Sure. Several ways to do that. One is “speedup” —

S(P ) =
Ttotal (1)

Ttotal (P )

• What would you guess is the best possible value for S(P )?



CSCI 3366 September 14, 2005

Slide 3

Amdahl’s Law

• Of course, most “real programs” have some parts that have to be done

sequentially. Gene Amdahl (principal architect of early IBM mainframe(s))

argued that this limits speedup — “Amdahl’s Law”:

If γ is the “serial fraction”, speedup on P processors is (at best — this

ignores overhead)

S(P ) =
1

γ + 1−γ
P

and as P increase, this approaches 1
γ — upper bound on speedup.

(Details of math in chapter 2.)

Slide 4

Parallel Overhead

• As we will find out — many reasons why a “real” parallel program might be

slower than Amdahl’s Law predicts.

• For shared-memory programming — if we need to synchronize use of shared

variables, that takes time.

• For message-passing programming — sending messages takes time.

Typically time to send a message involves a fixed cost plus a per-byte cost.

• Also, “poor load balance” may slow things down.

• But sometimes we can speed things up by “overlapping computation and

communication”.



CSCI 3366 September 14, 2005

Slide 5

MPI — Recap

• Intended as a single standard for message-passing programs. Many

implementations.

• Programs (at least in MPI 1.0) follow SPMD model — many processes, all

running the same source code, but each with its own memory space and

each with a different ID.

• Source code in C/C++/Fortran, with calls to MPI library functions.

Slide 6

MPI Library — Review

• Setup and bookkeeping — initialization, cleanup, environment query, etc.

• Data management — pack/unpack, derived data types.

• Point-to-point communication — several varieties, differing mostly in how

much synchronization.

• Collective operations — e.g., broadcast.



CSCI 3366 September 14, 2005

Slide 7

Simple (Blocking) Point-to-Point Communication in MPI

• Send with MPI Send — returns as soon as data has been copied to system

buffer, buffer in program can be reused.

• Receive with MPI Recv — waits until message has been received.

• Can use “tags” to distinguish between kinds of messages. Can receive

selectively or not (MPI ANY TAG). Received tag is in returned

MPI Status variable (e.g., status.MPI TAG).

• Can receive from specific sender or from any sender. (MPI ANY SOURCE).

Sender is in returned MPI Status variable (e.g.,

status.MPI SOURCE).

• For MPI Recv, “length” parameter specifies buffer length. Use

MPI Get count to get actual count.

Slide 8

Not-So-Simple Point-to-Point Communication in MPI

• For not-too-long messages and when readability is more important than

performance, MPI Send and MPI Recv are probably fine.

• If messages are long, however, buffering can be a problem, and can even

lead to deadlock. Also, sometimes it’s nice to be able to overlap computation

and communication.

• Therefore, MPI offers several other kinds of send/receive functions, including:

– Synchronous (MPI Ssend, MPI Recv) — blocks both sender and

receiver until communication can occur.

– Non-blocking send/receive (MPI Isend, MPI Irecv, MPI Wait) —

doesn’t block, program must explicitly test/wait.

– Which is faster/better? probably best to try them and find out. (Sample

programs exchange*.)



CSCI 3366 September 14, 2005

Slide 9

Collective Communication in MPI

• “Collective communication” operation — one that involves many processes

(typically all, or all in MPI “communicator”).

• Could implement using point-to-point message passing, but some operations

are common enough to be library functions — broadcast (MPI Bcast),

“reduction” (MPI Reduce), etc.

Slide 10

Timing MPI Programs

• “How long did it take?” often of interest. Can use system tools (e.g., time

command) to check total elapsed time. Or can time “interesting” parts of

program:

MPI Wtime returns elapsed time; call twice and subtract to find out how

long something takes (time msg.c on “sample programs” page).

• How meaningful output is depends — e.g., on whether the system is

otherwise idle. Probably best to repeat observations a few times, and do

some sort of averaging.



CSCI 3366 September 14, 2005

Slide 11

Minute Essay

• None — sign in.


