
CSCI 3366 September 26, 2005

Slide 1

Administrivia

• In response to minute essay from last week: Yes, the Java installed on the lab

machines (Linux side) is 5.0.

Slide 2

Basics of Multithreaded (Shared-Memory Parallel)
Programming

• Recall idea of message-passing programming:

An executing program consists of a bunch of “processes” running

concurrently. They communicate by sending/receiving messages.

• In contrast, multithreaded programs typically start out with one “thread” and

then create others as they execute. All threads have access to the same

address space, so variables can be shared. Hence, no need for messages —

instead, a need to “synchronize” among threads, e.g., making sure only

thread at a time can access a particular variable.



CSCI 3366 September 26, 2005

Slide 3

OpenMP

• As with MPI, idea was to come up with a single standard for shared-memory

parallel programming, then allow many implementations. For MPI, standard

defines concepts and library. For OpenMP, standard defines concepts, library,

and compiler directives.

• First release 1997 (for Fortran, followed in 1998 by version for C/C++).

• Several production-quality commercial compilers available. Free compilers in

work, some usable.

Slide 4

What’s an OpenMP Program Like?

• Fork/join model — “master thread” spawns a “team of threads”, which execute

in parallel until done, then rejoin main thread. Can do this once in program, or

multiple times.

• Source code in C/C++/Fortran, with OpenMP compiler directives (#pragma

— ignored if compiling with a compiler that doesn’t support OpenMP) and

(possibly) calls to OpenMP functions.

Compiler must translate compiler directives into calls to appropriate functions

(to start threads, wait for them to finish, etc.)

• A plus — can start with sequential program, add parallelism incrementally —

usually by finding most time-consuming loops and splitting them among

threads.

• Number of threads controlled by environment variable (roughly analogous to

“number of processes” parameter for mpirun), or from within program.



CSCI 3366 September 26, 2005

Slide 5

How Do Threads Interact?

• With MPI, processes don’t share an address space, so to communicate they

must use messages. With OpenMP, threads do share an address space, so

they communicate by sharing variables.

• Sharing variables is more convenient, may seem more natural.

• However, “race conditions” are possible — program’s outcome depends on

scheduling of threads, often giving wrong results.

What to do? use synchronization to control access to shared variables.

Works, but takes (execution) time, so good performance depends on using it

wisely.

Slide 6

Simple Example / Compiling and Executing

• Look at simple program — hello.c on sample programs page.

• Compile with compiler supporting OpenMP.

• Execute like regular program. Can set environment variable

OMP NUM THREADS to specify number of threads. Default value seems to

be one thread per processor.



CSCI 3366 September 26, 2005

Slide 7

OpenMP Constructs — Basic Categories

• Parallel regions (“replicate the following in all threads”).

• Worksharing (“divide the following among threads”).

• Data environment (shared variables versus per-thread variables).

• Synchronization.

• Runtime functions / environment variables.

Slide 8

Parallel Regions in OpenMP

• #pragma omp parallel tells compiler to do following block in all

threads (starting team of threads if necessary). Execution doesn’t proceed in

main thread until all are done. Example — “hello world” shown earlier.

• Block must be a “structured block” — block with one point of entry (at top) and

one point of exit (at bottom). In C/C++, this is a statement or statements

enclosed in brackets (with no gotos into / out of block).



CSCI 3366 September 26, 2005

Slide 9

Worksharing Constructs in OpenMP

• #pragma omp parallel for tells compiler to split iterations of

following for loop among threads. By default, main thread doesn’t continue

until all are done, but can override that (might be useful if you have two

consecutive such loops).

• How loop iterations are mapped onto threads — controlled by schedule

clause. More about this later.

• To make different threads do different things — #pragma parallel

sections, etc. (More in standard.)

Slide 10

A Little About Variables in OpenMP

• Most variables are shared by default, including any global variables.

• Some things, though, aren’t — variables within a statement block, stack

(local) variables in subprograms called from parallel region.

• Can specify that each thread gets its own copy with private clause.

• Can specify that each thread gets its own copy, and copies are combined at

the end, with reduction clause.



CSCI 3366 September 26, 2005

Slide 11

Minute Essay

• None — sign in.


